Anglia Ruskin Research Online (ARRO)
Browse
Gordon 2023_ExPhys.pdf (1.11 MB)

Voluntary torque production is unaffected by changes in local thermal sensation during normothermia and hyperthermia

Download (1.11 MB)
journal contribution
posted on 2023-07-26, 16:09 authored by Ralph Gordon, Neale Tillin, Ceri Diss, Christopher Tyler
This study investigated altered local head and neck thermal sensation on maximal and rapid torque production during voluntary contractions. Nine participants completed four visits in two environmental conditions: at rectal temperatures ∼39.5°C in hot (HOT; ∼50°C, ∼39% relative humidity) and ∼37°C in thermoneutral (NEU; ∼22°C, ∼46% relative humidity) conditions. Local thermal sensation was manipulated by heating in thermoneutral conditions and cooling in hot conditions. Evoked twitches and octets were delivered at rest. Maximum voluntary torque (MVT), normalised surface electromyography (EMG) and voluntary activation (VA) were assessed during brief maximal isometric voluntary contractions of the knee extensors. Rate of torque development (RTD) and EMG were measured during rapid voluntary contractions. MVT (P = 0.463) and RTD (P = 0.061) were similar between environmental conditions despite reduced VA (−6%; P = 0.047) and EMG at MVT (−31%; P = 0.019). EMG in the rapid voluntary contractions was also lower in HOT versus NEU during the initial 100 ms (−24%; P = 0.035) and 150 ms (−26%; P = 0.035). Evoked twitch (+70%; P < 0.001) and octet (+27%; P < 0.001) RTD during the initial 50 ms were greater in the HOT compared to NEU conditions, in addition to a faster relaxation rate of the muscle (−33%; P < 0.001). In conclusion, hyperthermia reduced neural drive without affecting voluntary torque, likely due to the compensatory effects of improved intrinsic contractile function and faster contraction and relaxation rates of the knee extensors. Changes in local thermal perception of the head and neck whilst hyperthermic or normothermic did not affect voluntary torque.

History

Refereed

  • Yes

Publication title

Experimental Physiology

ISSN

1469-445X

Publisher

Wiley

File version

  • Published version

Language

  • eng

Legacy posted date

2023-03-17

Legacy creation date

2023-03-17

Legacy Faculty/School/Department

Faculty of Science & Engineering

Usage metrics

    ARU Outputs

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC