Anglia Ruskin Research Online (ARRO)
Browse
1/1
2 files

Heat acclimation reduces the effects of whole-body hyperthermia on knee-extensor relaxation rate, but does not affect voluntary torque production.

journal contribution
posted on 2023-08-30, 20:25 authored by Ralph Gordon, Jodie Moss, Federico Castelli, Thomas Reeve, Ceri Diss, Christopher Tyler, Neale Tillin
Purpose This study investigated the effects of acute hyperthermia and heat acclimation (HA) on maximal and rapid voluntary torque production, and their neuromuscular determinants. Methods Ten participants completed 10 days of isothermic HA (50 °C, 50% rh) and had their knee-extensor neuromuscular function assessed in normothermic and hyperthermic conditions, pre-, after 5 and after 10 days of HA. Electrically evoked twitch and octet (300 Hz) contractions were delivered at rest. Maximum voluntary torque (MVT), surface electromyography (EMG) normalised to maximal M-wave, and voluntary activation (VA) were assessed during brief maximal isometric voluntary contractions. Rate of torque development (RTD) and normalised EMG were measured during rapid voluntary contractions. Results Acute hyperthermia reduced neural drive (EMG at MVT and during rapid voluntary contractions; P < 0.05), increased evoked torques (P < 0.05), and shortened contraction and relaxation rates (P < 0.05). HA lowered resting rectal temperature and heart rate after 10 days (P < 0.05), and increased sweating rate after 5 and 10 days (P < 0.05), no differences were observed between 5 and 10 days. The hyperthermia-induced reduction in twitch half-relaxation was attenuated after 5 and 10 days of HA, but there were no other effects on neuromuscular function either in normothermic or hyperthermic conditions. Conclusion HA-induced favourable adaptations to the heat after 5 and 10 days of exposure, but there was no measurable benefit on voluntary neuromuscular function in normothermic or hyperthermic conditions. HA did reduce the hyperthermic-induced reduction in twitch half-relaxation time, which may benefit twitch force summation and thus help preserve voluntary torque in hot environmental conditions.

History

Refereed

  • Yes

Publication title

European Journal of Applied Physiology

ISSN

1439-6327

Publisher

Springer

File version

  • Accepted version

Language

  • eng

Legacy posted date

2023-01-19

Legacy creation date

2023-01-19

Legacy Faculty/School/Department

Faculty of Science & Engineering

Usage metrics

    ARU Outputs

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC