Anglia Ruskin Research Online (ARRO)
Browse
Butt_et_al_2022.pdf (4.35 MB)

Non-Destructive and Destructive Testing to Analyse the Effects of Processing Parameters on the Tensile and Flexural Properties of FFF-Printed Graphene-Enhanced PLA

Download (4.35 MB)
journal contribution
posted on 2023-07-26, 15:53 authored by Javaid Butt, Raghunath Bhaskar, Vahaj Mohaghegh
The significance of non-destructive testing (NDT) methods cannot be overstated as they help to evaluate the properties of a material without damaging/fracturing it. However, their applicability is dependent on their ability to provide reliable correlation with destructive tests such as tensile and flexural. This correlation becomes more problematic when the material is not homogeneous, such is the case with parts manufactured using a popular additive manufacturing process termed as fused filament fabrication (FFF). This process also requires optimisation of its parameters to achieve desired results. Therefore, this study aims to investigate the effects of four different nozzle temperatures, print bed temperatures, and print speeds on FFF-printed Haydale’s Synergy Graphene Enhanced Super Tough PLA through three non-destructive (ultrasonic, hardness, strain) and two destructive (tensile, flexural) testing methods. Samples were manufactured using Anet® ET4 Pro 3D printer and evaluated as per British and International standards. Two non-destructive tests, i.e., ultrasonic and hardness have been associated with evaluating the tensile properties of the manufactured parts. These results were correlated with destructive tensile testing and showed good agreement. The NDT method of strain measurement showed a very good correlation with the destructive three-point flexural test and was able to provide a reliable evaluation of flexural properties as a function of all three processing parameters. The results presented in this work highlight the importance of NDT methods and how they can be used to evaluate different properties of a material.

History

Refereed

  • Yes

Volume

6

Issue number

5

Page range

148

Publication title

Journal of Composites Science

ISSN

2504-477X

Publisher

MDPI

File version

  • Published version

Language

  • eng

Legacy posted date

2022-05-30

Legacy creation date

2022-05-30

Legacy Faculty/School/Department

Faculty of Science & Engineering

Usage metrics

    ARU Outputs

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC