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Monitoring, predicting, and controlling the air quality in urban areas is one of the effective

solutions for tackling the climate change problem. Leveraging the availability of big data in

different domains like pollutant concentration, urban traffic, aerial imagery of terrains and

vegetation, and weather conditions can aid in understanding the interactions between

these factors and building a reliable air quality prediction model. This research proposes a

novel cost-effective and efficient air quality modeling framework including all these factors

employing state-of-the-art artificial intelligence techniques. The framework also includes

a novel deep learning-based vegetation detection system using aerial images. The pilot

study conducted in the UK city of Cambridge using the proposed framework investigates

various predictive models ranging from statistical to machine learning and deep recurrent

neural network models. This framework opens up possibilities of broadening air quality

modeling and prediction to other domains like vegetation or green space planning or

green traffic routing for sustainable urban cities. The research is mainly focused on

extracting strong pieces of evidence which could be useful in proposing better policies

around climate change.

Keywords: urban air quality, climate change mitigation, urban vegetation detection, regression based prediction

algorithms, machine learning and deep learning algorithms, aerial view image recognition, cost effective modeling

1. INTRODUCTION

The quality of air that we breathe is an important factor for a healthy human life and is a
major concern throughout the world in both, developed and developing countries. The ever-
growing urban population and increased volume of industries and motorised vehicles in cities
resulted in air pollution, affecting the environment and posing significant threats to human health.
Maintaining clean air is essential for our well-being and sustaining life on our planet. To address
these concerns, researchers have designed and developed several solutions for air quality analysis
and evaluation. Early air quality evaluation methods relied on conventional statistical approaches
and were restricted by limited accuracy and lack of flexibility (Kang et al., 2018). The advent of
modern Artificial Intelligence (AI) techniques such as Artificial Neural Networks (ANN) opened
up new possibilities for researchers around the world to find solutions to various problems affecting
air quality and climate change (Rybarczyk and Zalakeviciute, 2018; Rolnick et al., 2019).

One of the domains that have gathered a lot of attention in recent years is air quality monitoring
and urban city planning. Availability of Big data in domains like traffic management and air
pollutants concentrationmonitoring systems can directly help us to plan our cities and traffic routes
or even come upwith policies and regulations to keep our carbon footprint under control. Themain
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FIGURE 5 | AirQuality framework: modeling pollutant concentration with weather and vegetation.

FIGURE 6 | Yearly trends: pollutant concentration trends in the recent years.

gaseous pollutants, NO2 and particulate matter PM10, separately
for the years 2019 and 2020. The tree counts are calculated at
different radii around the pollutant monitoring station at the
distances of 100 m, 250 m, 500 m, and 1 km. It can be seen
from Figure 9 that the trees within a 100 m radius has strong
correlations with both pollutants especially particulate matter.

5.3. Feature Engineering
The air quality and weather data acquired from the Cambridge
City Council was collated to generate a time series data of
hourly intervals. These data points were used for modeling
the gaseous and particulate matter pollutants based on the

meteorological conditions and vegetation information in terms
of the number of trees. Several new features were deduced
from the existing ones as shown in Table 4. The date-time
component in the data set was used to create new features
like the day of the week, month number, and hour of the day.
A Boolean variable indicating weekend or not was added to
the data set. The mean pollutant concentration on weekends
is substantially less than on weekdays. The 10 and 20 day
rolling mean values for pollutant concentration was also added
to the data set. A categorical variable denoting the 4 seasons
were created and added to the data set. The month, hour,
and weekday being cyclical variables, six trigonometric variables
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FIGURE 7 | Daily NO2 trends: concentration trends across four different locations.

FIGURE 8 | Correlation between Wind Speed and PM10.

were created for these. The correlation of these new features
with regards to the gaseous and particulate matter pollutant is
presented in Figure 10. It can be observed that these features
should ideally provide independent complimentary value to
the models.

As shown in the table, the vegetation information is derived
as the number of trees within different radii surrounding the
location where the pollutant concentration was measured. This
includes the number of trees within the radius of 100 m, 250 m,
500 m, and 1 km calculated using the tree recognition model
described in Section 4.

5.4. Modeling and Prediction
This section discusses the results of experiments performed for
modeling the data as described through the framework presented

earlier (Figure 5). Experiments are performed with combinations
of engineered features as mentioned in Section 5.3. Within this
feature list, it can be observed that there are features pertaining
to vegetation which denotes the number of trees within different
distances from the location. Experiments were performed to
compare the effects of vegetation by modeling air quality with
and without these specific features pertaining to the vegetation
information. All other newly engineered features were included
in the different models except for Auto Regressive Integrated
Moving Average (ARIMA) which is a uni-variate time series
model for the specific pollutant concentration.

The pollutant data were collected from multiple locations
within Cambridge between 2016 and 2020 with a value recorded
every hour of the day. The data were divided into training
data (2016–2019) and unseen test data (2019–2020) resulting in
28,000 (74%) data points for training and 9,785 (26%) data points
for testing. The training dataset is further divided into two (at a
ratio 80–20%) to generate training and cross-validation sets for
tuning the hyperparameters. This research looks at multiple time
series prediction models including machine learning regression
models. The same dataset division was used in all models
presented in this research. The final results are estimated on the
same aforementioned held out test data set for all models.

The models investigated in this research range from the
statistical Auto Regressive Integrated Moving Average (ARIMA)
which is heavily used in air quality modeling studies to linear
models like simple linear regression with the ridge, lasso,
elastic-net counterparts alongside the polynomial regression.
Non-linear models including SVR with polynomial and Radial
Basis Function (RBF) Kernels and a combination of both were
also tested. Deep Learning models, such as LSTM, are also
investigated. All the aforementioned machine learning models
were subject to hyperparameter optimization.
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FIGURE 9 | Correlation between vegetation and pollutants (PM10 and NO2).

Similar to the other machine learning models, LSTM model
was trained using the engineered features mentioned in the
Section 5.3. An important factor to consider while training deep
neural networks is the hyperparameter tuning. Hyperparameter
optimization for the LSTM network was conducted using
BayesianOptimization tuner available in the Keras library.
The hyperparameters tuned are summarized in Table 5. The
parameters were the number of neurons, learning rate, the loss
function and the rate used in the dropout layer, and option to use
dropout or not. After conducting 3 trials per set of parameters,
the best set of hyperparameters was used to produce the results
presented in the results table. The optimization resulted in Mean
Squared Error as the identified loss function. The final LSTM
network had four layers including 5 LSTM layers followed by a
dense layer as the output. A dropout layer was added between
these layers to prevent over fitting. The rate of the dropout layer
was found using the tuner to be 0.4. The optimum number of
neurons was calculated as 288, 480, 384, 100, and 50 for the 5
layers in the model and the best learning rate during the trials was

0.0001. Tanh activation function performed better than the others
for the LSTM layers and linear activation function for the dense
output layer. The LSTM model optimization is an ongoing task
that demands a long training time and could be further improved.
The aim of the experiments is to find the optimal model that
could represent all the features in the framework. It could be
identified that some of the common regression models might
perform better than deep learning models like LSTM.

Experiments are performed on gaseous pollutant (NO2) and
particulate matter (PM10) separately. The models are generated
for each location separately. As mentioned earlier, the air
pollutant data is available with a frequency of every hour as
average values for 5 years (from 2016 to 2020). But, there is only a
single sample data value available for vegetation information per
location in this entire time period. More data points are needed
for modeling and understanding the influence of vegetation.
Unfortunately, the air quality is monitored only at four locations.
Initial experiments performed by combining two locations for
training and the resulting model tested on a third location

Frontiers in Big Data | www.frontiersin.org 13 March 2022 | Volume 5 | Article 822573

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Babu Saheer et al. Air Quality Modeling Framework

did not show promising results. As there are only data from
four locations available currently, combining multiple locations
and building more generic models is left as a future job. This
paper presents results only for a couple of individual locations
in Cambridge.

6. RESULTS AND DISCUSSION

The results are presented as tables of error metrics. Five different
error metrics are used to compare the performance of themodels.
These error metrics include mean average error(MAE), mean
squared error (MSE), root mean squared error (RMSE), mean
absolute percentage error (MAPE), and R2 score. While the
errors (MSE, MAPE, RMSE, and MAE) are better lower, the
R2-score ideally better closer to 1.

As mentioned earlier, readings from 2016 to 2019 are used as
training data and the values from 2019 to mid-2020 are used as
the test data. Tables 6, 7 show results for the different models of

TABLE 4 | Features introduced as a part of feature engineering.

Feature Data type Description

Weekend Float (0/1) Indicates whether the date is weekend or not

Weekday Float (0/1) Indicates whether the date is weekday or not

Season String The name of season derived from the date

HourCos,HourSin Float Since hour is a cyclic variable converted it to

trigonometric functions Cos and Sin

MonthCos,MonthSin Float Since month is a cyclic variable converted it to

trigonometric functions Cos and Sin

NO2MA10 Float 10 day Moving average of the concentration

NO2MA20 Float 20 Day Moving average of the concentration

100mTrees Float Number of trees within 100 m of the sensor

250mTrees Float Number of trees within 200 m of the sensor

500mTrees Float Number of trees within 500 m of the sensor

1000mTrees Float Number of trees within 1,000 m of the sensor

the gaseous pollutant NO2 for two individual locations. Tables 8,
9 present the same for the particulate matter PM10 for the same
locations. The overall best performing models are highlighted
in the tables. ARIMA models in all cases are uni-variate and
use only concentration values and no other features (including
engineered feature or vegetation information) for modeling.
The other models presented in the tables including the LSTM
models uses engineered features. These models are tested with
and without the vegetation information (as explained earlier)
represented by “With Trees” and “Without Trees” in the tables.

As observed from Tables 6, 7, SVR models with polynomial
Kernel performs slightly better than the other counterparts for
the NO2 modeling. The influence of trees on this pollutant
was especially noticed in one of the two locations. But more
experiments with data points combined from multiple locations
need to be performed to understand the influence of vegetation.
The tree feature might be acting just as a prior. The PM10 models
in Tables 8, 9 show similar trends for Support Vector Regression
with the RBF Kernel. Again the effects of vegetation is being
noticed for one of the locations on some error metrics.

The ARIMA models in most cases is showing slightly better
performance on one or two error metrics, but ARIMA is limited
by the fact that it looks at only the time series trend of the

TABLE 5 | Long short term memory (LSTM) Hyperparameters optimized during

model training.

Parameter name Parameter values

Number of LSTM layers 2 to 5

Number of Neurons per layer 32 to 512 with stepsize 32

Learning rate 1e-2, 1e-3 and 1e-4

Rate for dropout between 0 and 0.5

Dropout option True or False

Loss functions MSE, MAE

Activation functions Tanh, Linear, Relu, Sigmoid

FIGURE 10 | Correlation of the engineered features with regards to PM10 and NO2.
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TABLE 6 | Experimental results for NO2, location-1, and Parker Street.

Model Description MAE MSE RMSE R2 MAPE

ARIMA Without trees or extra features 5.4968 64.2431 8.0151 0.7804 29.2145

Linear regression With trees 7.1151 86.9743 9.3260 0.6911 39.0577

Linear regression Without trees 5.7071 59.4619 7.7111 0.7888 28.6116

LinearSVR With trees 7.0114 85.4898 9.2460 0.6963 37.7552

LinearSVR Without trees 5.7071 59.4619 7.7111 0.7888 28.6116

Polynomial regression With Trees 5.7845 59.2095 7.6947 0.7897 30.7340

Polynomial regression Without trees 5.7071 59.4619 7.7111 0.7888 28.6116

Polynomial SVR With Trees 5.7175 59.6007 7.7201 0.7883 28.9278

Polynomial SVR Without trees 5.7071 59.4619 7.7111 0.7888 28.6116

SVR With RBF Kernel With trees 5.8804 62.1121 7.8811 0.7794 32.5764

SVR With RBF Kernel Without trees 5.7071 59.4619 7.7111 0.7888 28.6116

PF-SVR with RBF Kernel With trees 5.8081 61.4881 7.8414 0.7816 31.7735

PF-SVR with RBF Kernel Without trees 5.7071 59.4619 7.7111 0.7888 28.6116

LSTM With trees 6.8184 87.6507 9.3621 0.6822 30.6485

LSTM Without trees 6.2056 71.3269 8.4455 0.7414 28.3280

linearSVR, SVR with linear kernel; polynomial SVR, SVR with polynomial kernel; PF-SVR, SVR using polynomial features; SVR with RBF kernel, SVR with radial basis function (RBF) kernel;

PF-SVR with RBF kernel, SVR using polynomial features and RBF kernel; LSTM, long short term memory; MAE, mean absolute error; MSE, mean squared error; RMSE, root MSE; R2,

R-squared error; MAPE, mean absolute percentage error; SVR, support vector regression. Bold values are indicate the overall best performing models.

TABLE 7 | Experimental results for NO2, location-2, Gonville Place.

Model Description MAE MSE RMSE R2 MAPE

ARIMA Without trees or extra features 4.9797 51.3185 7.1636 0.7516 31.9924

Linear regression With trees 6.8627 77.8650 8.8241 0.6172 40.6186

Linear regression Without trees 6.8627 77.8650 8.8241 0.6172 40.6186

LinearSVR With trees 6.5645 73.6806 8.5837 0.6378 37.8003

LinearSVR Without trees 6.5697 73.7699 8.5889 0.6373 37.8582

Polynomial regression With trees 5.8845 57.6263 7.5912 0.7167 34.9102

Polynomial regression Without trees 5.7924 56.6969 7.5297 0.7213 33.9497

Polynomial SVR Regression With Trees 5.6715 56.1565 7.4938 0.7239 32.4848

Polynomial SVR regression Without trees 5.6841 56.3862 7.5091 0.7228 32.6777

SVR With RBF Kernel With trees 5.8322 56.9608 7.5472 0.7200 36.4192

SVR With RBF Kernel Without trees 5.8322 56.9608 7.5472 0.7200 36.4192

PF-SVR with RBF Kernel With trees 5.7556 55.6738 7.4615 0.7263 36.0017

PF-SVR with RBF Kernel Without trees 5.7361 55.7099 7.4639 0.7261 35.6012

LSTM Without trees 5.0542 51.1251 7.1501 0.7484 23.0866

LSTM With trees 5.2241 52.6281 7.2545 0.7410 25.0298

LinearSVR, SVR with linear kernel; polynomial SVR, SVR with polynomial kernel; PF-SVR, SVR using polynomial features; SVR with RBF kernel, SVR with radial basis function (RBF)

kernel; PF-SVR with RBF kernel, SVR using polynomial features and RBF kernel; LSTM, long short term memory; MAE, mean absolute error; MSE, mean squared error; RMSE, root

MSE; R2, R-squared error; MAPE, mean absolute percentage error; SVR, support vector regression. Bold values are indicate the overall best performing models.

pollutant value alone and more features cannot be included in
this uni variate model. Deep learning models like LSTM at this
point do not show a significant performance improvement, but
has the potential to be tuned further with more data, more
features and better parameter and hyperparameter optimization.

7. CONCLUSION AND FUTURE WORK

This research proposes a novel framework for the air quality
modeling considering the related factors of weather and

vegetation. The prototype framework was validated for the
city of Cambridge using the existing pollutant data monitored
by the city authorities and common weather measurements.
Models were tested for two different locations within the
city. The vegetation information was incorporated into the
framework with our own novel methodology of self-supervised
tree detection system based on Google Earth Satellite images.
Multiple Machine Learning systems were modeled for a gaseous
and a particulate matter pollutant. Models ranged from statistical
ARIMA models to various linear and non-linear regression
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TABLE 8 | Experimental results for PM10, location-1, and Parker Street.

Model Description MAE MSE RMSE R2 MAPE

ARIMA Without Trees or Extra Features 3.8532 40.9184 6.3967 0.6375 59.7081

Linear Regression With Trees 4.6605 40.9548 6.3996 0.4913 29.2084

Linear Regression Without Trees 4.6605 40.9548 6.3996 0.4913 29.2084

LinearSVR With Trees 4.4460 39.5361 6.2878 0.5089 27.0797

LinearSVR Without Trees 4.4407 39.5027 6.2851 0.5093 27.0429

Polynomial Regression With Trees 4.0152 32.2899 5.6824 0.5989 25.1360

Polynomial Regression Without Trees 4.1887 34.1941 5.8476 0.5752 26.5016

Polynomial SVR Regression With Trees 4.0677 33.2232 5.7640 0.5873 25.1261

Polynomial SVR Regression Without Trees 4.0601 33.1445 5.7571 0.5883 25.0372

SVR With RBF Kernel With Trees 3.9584 31.9661 5.6539 0.6029 25.0983

SVR With RBF Kernel Without Trees 3.9584 31.9661 5.6539 0.6029 25.0983

PF-SVR with RBF Kernel With Trees 3.9552 32.2535 5.6792 0.5993 25.0009

PF-SVR with RBF Kernel Without Trees 3.9689 32.6011 5.7097 0.5950 25.0535

LSTM With Trees 6.9262 79.6629 8.9254 0.0852 46.8802

LSTM Without Trees 7.3973 94.0812 9.6995 0.0803 49.0300

LinearSVR, SVR with linear kernel; polynomial SVR, SVR with polynomial kernel; PF-SVR, SVR using polynomial features; SVR with RBF kernel, SVR with radial basis function (RBF)

Kernel; PF-SVR with RBF kernel, SVR using polynomial features and RBF kernel; LSTM, long short term memory; MAE, mean absolute error; MSE, mean squared error; RMSE, root

MSE; R2, R-squared error; MAPE, mean absolute percentage error, SVR, support vector regression. Bold values are indicate the overall best performing models.

TABLE 9 | Experimental results for PM10, location-2, Gonville Place.

Model Description MAE MSE RMSE R2 MAPE

ARIMA Without Trees or Extra Features 3.5494 30.2370 5.4988 0.6762 23.1247

Linear Regression With Trees 4.1726 31.8227 5.6411 0.5735 27.7313

Linear Regression Without Trees 4.1711 31.8322 5.6420 0.5733 27.7040

LinearSVR With Trees 4.1327 32.3228 5.6853 0.5668 26.8300

LinearSVR Without Trees 4.1337 32.3442 5.6871 0.5665 26.8376

Polynomial Regression With Trees 3.7524 26.2176 5.1203 0.6486 24.7285

Polynomial Regression Without Trees 3.7730 26.5354 5.1512 0.6443 24.8110

Polynomial SVR Regression With Trees 3.7695 26.7237 5.1695 0.6418 24.3154

Polynomial SVR Regression Without Trees 3.7736 26.8158 5.1783 0.6406 24.4013

SVR With RBF Kernel With Trees 3.7202 26.5390 5.1516 0.6445 24.2396

SVR With RBF Kernel Without Trees 3.7187 26.5239 5.1501 0.6445 24.0750

PF-SVR with RBF Kernel With Trees 3.7497 27.2717 5.2222 0.6345 24.1598

PF-SVR with RBF Kernel Without Trees 3.7679 27.5793 5.2516 0.6303 24.2984

LSTM With Trees 4.9231 45.8927 6.7744 0.4292 NA

LSTM Without Trees 4.7463 44.2022 6.6484 0.4503 NA

LinearSVR, SVR with linear kernel; Polynomial SVR, SVR with polynomial Kernel; PF-SVR, SVR using Polynomial features; SVR with RBF kernel, SVR with radial basis function (RBF)

kernel; PF-SVR with RBF kernel, SVR using polynomial features and RBF kernel; LSTM, long short term memory; MAE, mean absolute error; MSE, mean squared error; RMSE, root

MSE; R2, R-squared error; MAPE, mean absolute percentage error; SVR, support vector regression. Bold values are indicate the overall best performing models.

techniques including SVRwith different Kernels and an advanced
LSTM based deep learning model. Multiple error metrics were
analyzed to understand the overall performance of the model.
The SVR models show promising results even with the lack
of localized weather conditions and lack of data from multiple
locations for effective use of the vegetation feature. The deep
learning models also show some prospects for improvement with
more appropriate data and optimization.

Our current research is focused on building custom pollutant
monitoring devices to collect data frommultiple locations within

the city to generate more accurate and generic models. We aim
to look at local weather conditions and the effects of micro
climate on the model. The research will also be expanded to
other types of pollutants to understand various features affecting
the pollutant concentrations. Estimates of emissions may also
be incorporated into the framework along with tree species or
vegetation or terrain type information. With more data collected,
the research will focus on improving models including the deep
learning models. The framework can also be scaled to any other
city in the world. Different seasonal variations (currently only
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incorporated as a single feature value as season) will also be
studied. The tree species identification from aerial view images
has already been initiated (Waters et al., 2021) and would also
be incorporated in the framework. Micro climate modeling using
custom monitoring devices measuring local weather conditions
and more pollutants are also pursued as future steps in this
research. There are plans to acquire more aerial view data using
drone imagery to model the variations in seasonality of the
vegetation. The research is underway along these lines with an
aim to continuously improve this framework.
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