Anglia Ruskin Research Online (ARRO)
Browse
Vauzour_et_al_2021.pdf (2.62 MB)

Anthocyanins Promote Learning through Modulation of Synaptic Plasticity Related Proteins in an Animal Model of Ageing

Download (2.62 MB)
journal contribution
posted on 2023-07-26, 15:29 authored by David Vauzour, Catarina Rendeiro, Alfonsina D’Amato, Pierre Waffo-Téguo, Tristan Richard, Jean Michel Mérillon, Matthew G. Pontifex, Emily Connell, Michael Müller, Laurie T. Butler, Claire M. Williams, Jeremy P. E. Spencer
Anthocyanin-rich foods, such as berries, reportedly ameliorate age-related cognitive deficits in both animals and humans. Despite this, investigation into the mechanisms which underpin anthocyanin-mediated learning and memory benefits remains relatively limited. The present study investigates the effects of anthocyanin intake on a spatial working memory paradigm, assessed via the cross-maze apparatus, and relates behavioural test performance to underlying molecular mechanisms. Six-week supplementation with pure anthocyanins (2% w/w), administered throughout the learning phase of the task, improved both spatial and psychomotor performances in aged rats. Behavioural outputs were accompanied by changes in the expression profile of key proteins integral to synaptic function/maintenance, with upregulation of dystrophin, protein kinase B (PKB/Akt) and tyrosine hydroxylase, and downregulation of apoptotic proteins B-cell lymphoma-extra-large (Bcl-xL) and the phosphorylated rapidly accelerated fibrosarcoma (p-Raf). Separate immunoblot analysis supported these observations, indicating increased activation of extracellular signal-related kinase (ERK1), Akt Ser473, mammalian target of rapamycin (mTOR) Ser2448, activity-regulated cytoskeleton-associated protein (Arc/Arg 3.1) and brain-derived neurotrophic factor (BDNF) in response to anthocyanin treatment, whilst α-E-catenin, c-Jun N-terminal kinase (JNK1) and p38 protein levels decreased. Together, these findings suggest that purified anthocyanin consumption enhances spatial learning and motor coordination in aged animals and can be attributed to the modulation of key synaptic proteins, which support integrity and maintenance of synaptic function.

History

Refereed

  • Yes

Volume

10

Issue number

8

Page range

1235

Publication title

Antioxidants

ISSN

2076-3921

Publisher

MDPI

File version

  • Published version

Language

  • eng

Legacy posted date

2021-08-19

Legacy creation date

2021-08-19

Legacy Faculty/School/Department

Faculty of Science & Engineering

Usage metrics

    ARU Outputs

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC