Anglia Ruskin Research Online (ARRO)
Browse

File(s) not publicly available

Combined use of parallel-plate compression and finite element modeling to analyze the mechanical properties of intact porcine lens

journal contribution
posted on 2023-07-26, 15:14 authored by Kehao Wang, Demetrios T. Venetsanos, Jian Wang, Barbara K. Pierscionek
The objective of this study is to explore the feasibility of a compression test for measuring mechanical properties of intact eye lenses using novel parallel plate compression equipment to compare the accuracy of implementing a classical Hertzian model and a newly proposed adjusted Hertzian model to calculate Young’s modulus from compression test results using finite element (FE) analysis. Parallel-plate compression tests were performed on porcine lenses. An axisymmetric FE model was developed to simulate the experimental process to evaluate the accuracy of using the classical Hertzian theory of contact mechanics as well as a newly proposed adjusted Hertzian theory model for calculating the equivalent Young’s modulus. By fitting the force-displacement relation obtained from FE simulations to both the classical and adjusted Hertzian theory model and comparing the calculated modulus to the input modulus of the FE model, the results demonstrated that the classical Hertzian theory model overestimated the Young’s modulus with a proportional error of over 10%. The adjusted Hertzian theory model produced results that are closer to original input values with error ratios all lower than 1.29%. Measurements of three porcine lenses from the parallel plate compression experiments were analyzed with resulting values of Young’s modulus of between 3.2kPa and 4.3kPa calculated. This study demonstrates that the adjusted Hertzian theory of contact mechanics can be applied in conjunction with the parallel-plate compression system to investigate the overall mechanical behavior of intact lenses.

History

Refereed

  • Yes

Volume

18

Issue number

07

Page range

1840013

Publication title

Journal of Mechanics in Medicine and Biology

ISSN

1793-6810

Publisher

World Scientific

Language

  • other

Legacy posted date

2021-02-15

Legacy Faculty/School/Department

Faculty of Health, Education, Medicine & Social Care

Usage metrics

    ARU Outputs

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC