Anglia Ruskin Research Online (ARRO)
Browse
Tabernero_et_al_2020.pdf (1.69 MB)

A Comparison Between Refraction From an Adaptive Optics Visual Simulator and Clinical Refractions

Download (1.69 MB)
journal contribution
posted on 2023-07-26, 15:00 authored by Juan Tabernero, Carles Otero, Shahina Pardhan
Purpose: The Visual Adaptive Optics (VAO) is an adaptive optics visual simulator with an embedded Hartmann–Shack aberrometer that can give objective and subjective refraction measures. The aim of the present study was to compare the findings of the objective and subjective refractions from the VAO with a commercial autorefractometer (Topcon Corp., Tokyo, Japan) and a subjective refraction by an optometrist. The influence of age, refractive error type, and presence of ocular diseases was ascertained. Methods: The refractive error was obtained in 469 participants using the four techniques mentioned. Data were analyzed with power vectors mean spherical equivalent, the vertical Jackson-Cross-Cylinder, and the oblique Jackson-Cross-Cylinder. Age, refractive error type (myopia, emmetropia, hyperopia) and presence of ocular diseases (yes, no) were included as covariates. Agreement was assessed using the 95% interval of agreement. Results: The median spherical equivalent difference and the interval of agreement for all the participants with the VAO subjective, VAO objective, and autorefraction with the clinical subjective refraction were (+0.13, 1.80 diopters [D]), (+0.38, 1.80 D), and (−0.38, 2.10 D), respectively. When considering only healthy participants, the results were (+0.06, 1.70 D), (+0.38, 1.60 D) and (−0.25, 1.80 D), respectively. When considering only those participants with any ocular condition, the results with VAO subjective, VAO objective and autorefraction were (+0.13, 2.50 D), (+0.31, 2.70 D), and (−0.50, 4.80 D), respectively. Conclusions: The VAO subjective refraction is more accurate than VAO objective refraction and autorefraction, regardless of refractive error, age, or the presence of ocular conditions. The presence of ocular conditions significantly deteriorates the accuracy of all refraction methods. Translational Relevance: Reported clinical comparisons between different types of standard refraction methods and a new adaptive optics refraction instrument (VAO) are in good agreement and support the further development of this method to increase refraction accuracy and to refract quicker than standard procedures.

History

Refereed

  • Yes

Volume

9

Issue number

7

Page range

23

Publication title

Translational Vision Science and Technology

ISSN

2164-2591

Publisher

ARVO

File version

  • Published version

Language

  • eng

Legacy posted date

2020-05-14

Legacy creation date

2020-07-20

Legacy Faculty/School/Department

Faculty of Health, Education, Medicine & Social Care

Usage metrics

    ARU Outputs

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC