Anglia Ruskin Research Online (ARRO)
Browse

File(s) under permanent embargo

Thrombospondin-1 promotes matrix homeostasis by interacting with collagen and lysyl oxidase precursors and collagen cross-linking sites

journal contribution
posted on 2023-09-01, 14:33 authored by Silvia Rosini, Nicholas Pugh, Arkadiusz M. Bonna, David J. S. Hulmes, Richard W. Farndale, Josephine C. Adams
Fibrillar collagens of the extracellular matrix are critical for tissue structure and physiology; however, excessive or abnormal deposition of collagens is a defining feature of fibrosis. Regulatory mechanisms that act on collagen fibril assembly potentially offer new targets for antifibrotic treatments. Tissue weakening, altered collagen fibril morphologies, or both, are shared phenotypes of mice lacking matricellular thrombospondins. Thrombospondin-1 (TSP1) plays an indirect role in collagen homeostasis through interactions with matrix metalloproteinases and transforming growth factor–β1 (TGF-β1). We found that TSP1 also affects collagen fibril formation directly. Compared to skin from wild-type mice, skin from Thbs1−/− mice had reduced collagen cross-linking and reduced prolysyl oxidase (proLOX) abundance with increased conversion to catalytically active LOX. In vitro, TSP1 bound to both the C-propeptide domain of collagen I and the highly conserved KGHR sequences of the collagen triple-helical domain that participate in cross-linking. TSP1 also bound to proLOX and inhibited proLOX processing by bone morphogenetic protein-1. In human dermal fibroblasts (HDFs), TSP1 and collagen I colocalized in intracellular vesicles and on extracellular collagen fibrils, whereas TSP1 and proLOX colocalized only in intracellular vesicles. Inhibition of LOX-mediated collagen cross-linking did not prevent the extracellular association between collagen and TSP1; however, treatment of HDFs with KGHR-containing, TSP1-binding, triple-helical peptides disrupted the collagen-TSP1 association, perturbed the collagen extracellular matrix, and increased myofibroblastic differentiation in a manner that depended on TGF-β receptor 1. Thus, the extracellular KGHR-dependent interaction of TSP1 with fibrillar collagens contributes to fibroblast homeostasis.

History

Refereed

  • Yes

Volume

11

Issue number

532

Page range

eaar2566

Publication title

Science Signaling

ISSN

1937-9145

Publisher

American Association for the Advancement of Science

File version

  • Other

Language

  • eng

Legacy posted date

2019-08-28

Legacy Faculty/School/Department

ARCHIVED Faculty of Science & Technology (until September 2018)

Usage metrics

    ARU Outputs

    Categories

    No categories selected

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC