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Food systems represent a significant risk to financial and political
stability in a number of regions around the world. The Global Sustain-
ability Institute at Anglia Ruskin University has been building mod-
els, gathering data and developing methods to explore the dynamics
involved in civil unrest, financial instability and local responses as-
sociated with food production shocks. These include agent based
modelling, systems dynamic modelling, narratives, scenario devel-
opment, access to weather systems monitoring and war gaming.
However, the analysis techniques applied to understanding historic
food price dynamics as a result of production shocks are simple
econometric tools such as regression testing. A much more sophis-
ticated approach to data analysis could yield new insights in historic
price shocks that would better inform policy and market based re-
sponses.

1. Food Production Instability

The UN Sustainable Development Goals aim to end all forms
of hunger and malnutrition by 2030, ensuring all people have
access to improved nutrition and food security (Organization
Nation United (ONU), 2015). However, while technological
advances and economic growth have improved agricultural
productivity, the global food production system remains
vulnerable to inherent systemic risk.

Over the last century several food production shocks have
resulted in production losses to individual grains exceeding 10
percent (Lunt et al., 2016). The current food system is vulner-
able to various shocks that may be exacerbated by factors such
as climate change, water stress, ongoing globalisation, and
intensified political instability in multiple regions. Madeddu
et al. (2005), Natalini et al. (2015) note that shocks to food
production may adversely and disproportionately impact devel-
oping countries with unstable political regimes, due to, among
other reasons, the strong correlation between food produc-
tion shocks and concomitant export/import and price shocks.
Similarly, Distefano et al. (2017), Puma et al. (2015) show
that the least developed countries suffer most during times of
shock-induced food scarcity and systemic disruptions to ’busi-
ness as usual’ trade flows. Shock-induced disruptions to food
production not only disturb food security in the most vulnera-
ble populations but can also propagate outsized system-wide
effects through negative feedbacks, thresholds effects and non-
linear interactions that exacerbate the unfortunate situation
(Pindyck, 2013).

2. Current Modelling

Food security is often defined in relation to a combination
of climatic, biological, economic and societal factors at
different scales to illustrate the complicated interrela-
tions between network elements. Due to the complexity

of these networks, representative models are not always
easy to comprehend and are often ambiguous for policymakers.

Technological and scientific advances, together with in-
creasingly efficient data collection and storage, have made it
possible to study a large number of factors in combination and
at different scales. This enables, in principle, greater efficiency
when tackling the problem of food production instability and
has led to a wide range of modelling techniques within the
field of global sustainability. We begin by bringing the reader
up to speed with the latest developments in the modelling
of food production instability at different scales, which are
crudely defined by physical space coverage and the increasing
level of detail in the models. Each model scale has its own
advantages and limitations.

To the best of our knowledge, most of the most recent
models are described in Figure 1 and include both global
and regional models, as well as a model that feeds global
conditions into a local land use model, i.e. MAGNET
(Rutten et al., 2014). The traditional small-scale regional
models include the isolated farm-level and agricultural
models are unable to incorporate information relative to
forecasting food price variation and stabilities. To the
contrary, the global models developed under the framework of
the Agricultural Model Intercomparison and Improvement
Project (AgMIP combine insights from multiple food system
models, and are capable of predicting food price variations
with a view towards social welfare impacts. However, the
model under the aforementioned framework generate het-
erogeneous results for the same input (von Lampe et al., 2014).

Shortridge et al. (2015) made use of multiple regres-
sion and data-mining methods to estimate the percent of
a country’s undernourished population (year average) with
predictors including socio-economic factors, agricultural
production, trade-related variables, and climate conditions. In
more recent work, Bakker et al. (2018) considers a significantly
shorter time-scale, i.e. monthly, to model how food access
varies within a given year as well as across years, and the
potential response to crop failure shocks.

Many studies have addressed the question of food insecurity,
focusing on the strong association between social well-being
and food access and prices. Although significant progress has
been made in the recent years, the time-scale of predictions
is too long for policy-relevant mitigation purposes, while the
spatial-scale is at times too large due to differences and dis-
crepancies in the data obtained from various sources. Another
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Fig. 1. Some of the current modelling approaches are summarised along the Fibonacci curve based on their spatial properties and inputs. The farm-level models have recently
been reviewed by Janssen and van Ittersum (2007); Agricultural models - Jones et al. (2015); MAGNET - Rutten et al. (2014); GCAM - Calvin et al. (2013); IMPACT - Rosegrant
et al. (2008); GLOBIOM - Havlík et al. (2011),Ermolieva et al. (2015); Food-DECO - Bakker et al. (2018) and Shortridge et al. (2015)

important issue was raised by Pindyck (2013), who warns of
large economic impacts that would arise from catastrophic tem-
perature change this century, which Weitzman (2009) poses as
a plausible scenario given parameter uncertainties that may
lead to a fat-tailed distribution for climate sensitivity.

3. What Can We Learn from Other Fields?

In order to improve our understanding of the dynamics of
highly nonlinear systems, adequately predict food instability
periods and identify the underlying patterns and potential
drivers of these instabilities, we need to employ new techniques.

In this paper, we propose to combine methods from
global sustainability with methods from mathematics and
physics to describe the food production system as a dynamical
system with many degrees of freedom. In particular, we
have extensively reviewed a full range of potentially relevant
methodological applications in other disciplines, determining
preliminarily that the most relevant are contained in financial
mathematics and geophysical sciences.

A. Financial Mathematics. In the financial industry, advances
in computing power and data analytics are changing the face
of asset management, leading to computer-driven decision
making. In financial mathematics, predictions of shocks to
stock prices are foundational and form the core of profit-
making strategies; the machine learning techniques used to aid
in shock predictions (Guresen et al., 2011) (both aggregated
and isolated) appear directly applicable to the prediction
of food production price shocks, especially since many of
the ‘pre-shock’ predictors are human-related or market-
induced, and relate to political systems more broadly. The
data generating process for shocks to food prices is likely to
have similar properties, albeit with a different set of predictors.

The field of econophysics, with its emphasis on assess-
ing mathematical patterns that capture the ’fat tails’ of

market fluctuations, has helped to change the direction of
much economics research. Similarly, its insights may help
establish a financial market-esque framework for forecasting
changes to food production markets, and a power law to
describe the probability of large food market movements,
whether positive or negative.

In a recent study, Abis (2017) explores quantitative in-
vestment modelling using machine learning techniques.
The model in consideration is based on price prediction of
multiple assets subject to common aggregate and individual
idiosyncratic shocks. The model assumes that during a
recession that is viewed as a period of greater risk aversion,
i.e. the period of high volatility arising from an aggregate
shock, the focus is on learning from the aggregate shock rather
than idiosyncratic shocks. The latter are more important in
periods of expansion. Predictions of price movements of stock
portfolios are based on, among other variables, a number
of risk factors, learning capacity, and shock volatility prior
distributions using the random forest algorithm. Greenwood
and Thesmar (2011) also noted that stock connectivity and
fragility affect the amount of exposure to non-fundamental
risk - i.e. correlated liquidity shocks - information that was
used in the analysis in Abis (2017).

Using the concept of aggregate and individual idiosyn-
cratic shocks as well as the external and endogenous shocks,
food price volatility response functions may be predicted
similarly to methods used in (Sornette et al., 2002), who
validated the theory empirically on data from a hierarchy
of volatility shocks, major crashes, and major external
disturbances, identifying specific signatures and characteristic
precursors for the endogenous class of shocks.

Due to the underlying stochastic nature of food pro-
duction pricing and its exposure to international markets and
other external pressures, the decision making techniques in

Shumaylova et al.



financial institutions are directly applicable and may be used
to derive short-term predictions as well as long-term forecasts.

B. Tectonophysics. The field of earthquake prediction has
faced significant challenges for many years due to the shear
complexity and nonlinearity of the dynamical system we all
live in (Tiampo and Shcherbakov, 2012). Like the cascade
effects of food production shortfalls, impacts from earthquakes
may be catastrophic and socially detrimental. Both types of
events previously seemed intrinsically unpredictable and for
years attention was directed towards collecting vast amounts
of data associated with the underlying processes. However,
recent developments suggest that both short-term earthquake
forecasting (days to weeks) and longer-term forecasting (five
to ten years) are now more realistic than ever before.

Over the last decade, data mining techniques have
been utilised in the estimation of large earthquake event
occurrences, including but not limited to the work of Adeli and
Panakkat (2009), Alexandridis et al. (2014), Martínez-Álvarez
et al.. The studies deal with such issues as limited training
data, removal of after-shocks, and inferences from regional
versus global data. The authors typically adopt widely-used
regression models for benchmarking as well as backtesting
the results, which provide fresh pattern discovery before an
earthquake takes place.

The results derived using data mining techniques pose
new challenges to the earthquake prediction community. In
particular, there is a need to make use of all available and
relevant information collected over many years and develop
new predictors to improve the current state of modelling. The
field of global sustainability has a lot to learn from the young
but promising field of AI-inspired prediction of earth system
processes.

4. Conclusion

In our era of unprecedented data mining and dynamical mod-
elling capabilities, the field of global food sustainability has the
potential to move beyond the limits of conventional regression
techniques and significantly improve forecasting capabilities.
It is now possible to build prediction engines that incorpo-
rate insights from the wealth of historical observational data
pertaining to past food production shocks, while using data
mining algorithms frequently utilised in the fields of mathe-
matical finance and tectonophysics. Building such a prediction
engine could help produce more reliable, policy-relevant in-
sights about the combination and sequence of common or
idiosyncratic factors that more accurately signal the arrival
time of food system shocks via a feature selection process.
Shock identification can be improved by the use of trans-
forms that provide predictors that are more sensitive to signal
changes and can be useful for transient detection.
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