Anglia Ruskin Research Online (ARRO)
Browse

File(s) under permanent embargo

Channelled tablets: An innovative approach to accelerating drug release from 3D printed tablets

journal contribution
posted on 2023-09-01, 14:20 authored by Muzna Sadia, Basel Arafat, Waqar Ahmed, Robert T. Forbes, Mohamed A. Alhnan
Conventional immediate release dosage forms involve compressing the powder with a disintegrating agent that enables rapid disintegration and dissolution upon oral ingestion. Among 3D printing technologies, the fused deposition modelling (FDM) 3D printing technique has a considerable potential for patient-specific dosage forms. However, the use of FDM 3D printing in tablet manufacturing requires a large portion of polymer, which slows down drug release through erosion and diffusion mechanisms. In this study, we demonstrate for the first time the use of a novel design approach of caplets with perforated channels to accelerate drug release from 3D printed tablets. This strategy has been implemented using a caplet design with perforating channels of increasing width (0.2, 0.4, 0.6, 0.8 or 1.0 mm) and variable length, and alignment (parallel or at right angle to tablet long axis). Hydrochlorothiazide (BCS class IV drug) was chosen as the model drug as enhanced dissolution rate is vital to guarantee oral bioavailability. The inclusion of channels exhibited an increase in the surface area/volume ratio, however, the release pattern was also influenced by the width and the length of the channel. A channel width was ≥ 0.6 mm deemed critical to meet the USP criteria of immediate release products. Shorter multiple channels (8.6 mm) were more efficient at accelerating drug release than longer channels (18.2 mm) despite having comparable surface area/mass ratio. This behaviour may be linked to the reduced flow resistance within the channels and the faster fragmentation during dissolution of these tablets. In conclusion, the width and length of the channel should be carefully considered in addition to surface area/mass when optimizing drug release from 3D printed designs. The incorporation of short channels can be adopted in the designs of dosage forms, implants or stents to enhance the release rate of eluting drug from polymer-rich structures.

History

Refereed

  • Yes

Volume

269

Page range

355-363

Publication title

Journal of Controlled Release

ISSN

1873-4995

Publisher

Elsevier

File version

  • Other

Language

  • eng

Legacy posted date

2018-08-31

Legacy Faculty/School/Department

ARCHIVED Faculty of Medical Science (until September 2018)

Usage metrics

    ARU Outputs

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC