A Novel Deep Learning based Automatic Auscultatory Method to Measure Blood Pressure

Pan, Fan and He, Peiyu and Chen, Fei and Zhang, Jing and Wang, He and Zheng, Dingchang (2019) A Novel Deep Learning based Automatic Auscultatory Method to Measure Blood Pressure. International Journal of Medical Informatics, 128. pp. 71-78. ISSN 1872-8243

[img] Text
Accepted Version
Restricted to Repository staff only until 29 April 2020.
Available under the following license: Creative Commons Attribution Non-commercial No Derivatives.

Download (986kB) | Request a copy
Official URL: https://doi.org/10.1016/j.ijmedinf.2019.04.023

Abstract

Background: It is clinically important to develop innovative techniques that can accurately measure blood pressures (BP) automatically. Objectives: This study aimed to present and evaluate a novel automatic BP measurement method based on deep learning method, and to confirm the effects on measured BPs of the position and contact pressure of stethoscope. Methods: 30 healthy subjects were recruited. 9 BP measurements (from three different stethoscope contact pressures and three repeats) were performed on each subject. The convolutional neural network (CNN) was designed and trained to identify the Korotkoff sounds at a beat-by-beat level. Next, a mapping algorithm was developed to relate the identified Korotkoff beats to the corresponding cuff pressures for systolic and diastolic BP (SBP and DBP) determinations. Its performance was evaluated by investigating the effects of the position and contact pressure of stethoscope on measured BPs in comparison with reference manual auscultatory method. Results: The overall measurement errors of the proposed method were 1.4 ± 2.4 mmHg for SBP and 3.3 ± 2.9 mmHg for DBP from all the measurements. In addition, the method demonstrated that there were small SBP differences between the 2 stethoscope positions, respectively at the 3 stethoscope contact pressures, and that DBP from the stethoscope under the cuff was significantly lower than that from outside the cuff by 2.0 mmHg (P < 0.01). Conclusion: Our findings suggested that the deep learning based method was an effective technique to measure BP, and could be developed further to replace the current oscillometric based automatic blood pressure measurement method.

Item Type: Journal Article
Keywords: Blood pressure measurement, convolutional neural network, manual auscultatory method, stethoscope position, stethoscope contact pressure, Deep Learning, Automatic Auscultatory Method
Faculty: Faculty of Health, Education, Medicine & Social Care
Depositing User: Professor D Zheng
Date Deposited: 10 May 2019 11:04
Last Modified: 14 Nov 2019 16:07
URI: http://arro.anglia.ac.uk/id/eprint/704333

Actions (login required)

Edit Item Edit Item