A novel small molecule TLR4 antagonist (IAXO-102) negatively regulates non-hematopoietic toll like receptor 4 signalling and inhibits aortic aneurysms development

Huggins, Christopher and Pearce, Stuart and Peri, Francesco and Neumann, Frank and Cockerill, Gillian and Pirianov, Grisha (2015) A novel small molecule TLR4 antagonist (IAXO-102) negatively regulates non-hematopoietic toll like receptor 4 signalling and inhibits aortic aneurysms development. Atherosclerosis, 242 (2). pp. 563-570. ISSN 0021-9150

[img]
Preview
Text
Published Version
Available under the following license: Creative Commons Attribution Non-commercial No Derivatives.

Download (1MB) | Preview
Official URL: https://doi.org/10.1016/j.atherosclerosis.2015.08....

Abstract

Objectives The toll-like receptors (TLRs), including TLR4, have been shown to play a crucial role in vascular inflammatory diseases, such as atherosclerosis and aneurysm. The main goal of this study was to determine the potential of IAXO-102 (Innaxon, Tewkesbury), a novel small molecule TLR4 antagonist, to modulate non-hematopoietic TLR4 proinflammatory signalling and inhibit experimental abdominal aortic aneurysm (AAA) development. Methods Human umbilical vein endothelial cells (HUVEC) and Angiotensin II-induced experimental AAA development were our in vitro and in vivo models respectively. Western blotting, antibody array and ELISA approaches were used to explore the effect of IAXO-102 on TLR4 functional activity on two levels: modulation of TLR4-induced mitogen activated protein kinases (MAPK) and p65 NF-kB phosphorylation and expression of TLR4 dependent proinflammatory proteins. Results Following activation of TLR4, in vitro/in vivo data revealed that IAXO-102 inhibited MAPK and p65 NF-kB phosphorylation associated with down regulation of the expression of TLR4 and TLR4 dependent proinflammatory proteins. Furthermore, IAXO-102 decreased Angiotensin II-induced aortic expansion, rupture and incidence of AAA. Conclusions These results demonstrate the ability of IAXO-102 to negatively regulate TLR4 signalling and to inhibit experimental AAA development, suggesting the potential therapeutic use of this TLR4 antagonist for pharmacological intervention of AAA.

Item Type: Journal Article
Keywords: experimental aneurysms, toll like receptor 4, toll like receptor 4 antagonist IAXO-102
Faculty: Faculty of Science & Technology
Depositing User: Ian Walker
Date Deposited: 09 Mar 2018 12:45
Last Modified: 09 Mar 2018 12:45
URI: http://arro.anglia.ac.uk/id/eprint/702819

Actions (login required)

Edit Item Edit Item