Bcl-x\textsubscript{L} deamidation in oncogenic tyrosine kinase signalling

Rui Zhao

SID 0716665/1
ACKNOWLEDGEMENTS

I am grateful to my colleagues who contribute to this project, particularly Dr Denis Alexander for his supervision, and the Babraham Institute, where the work was completed. Also I thank my family for their tremendous support in the last 8 years.
Timeline

Summary

Introduction

Chapter 1. Chronology of research interests

1.1 Oncogenic tyrosine kinase LckF505Y in murine thymocyte transformation
 1.1.1 Aim and strategy
 1.1.2 Kinase activity
 1.1.3 Survival and cell-cycle progression
 1.1.4 DNA repair and genomic instability
 1.1.5 DNA damage-induced apoptosis
 1.1.6 Examining the survival pathway in CD45$^{-/-}$ LckF505Y DN thymocytes in DNA damage response

1.2 How is Bcl-x$_L$ deamidated in DNA damage responses?
 1.2.1 Elucidation of the roles of different species of Bcl-x$_L$ by in vitro and in vivo studies
 1.2.2 Is Bcl-x$_L$ deamidation a consequence of mitochondrial apoptosis?
 1.2.3 The DNA damage-NHE-1 up-regulation-intracellular alkalisation-Bcl-x$_L$ deamidation axis

1.3 Bcl-x$_L$ deamidation pathway in Myeloproliferative Disorders (MPDs)
 1.3.1 Why investigate Bcl-x$_L$ deamidation pathway in MPDs?
 1.3.2 Patients’ sample collection and cell purification
 1.3.3 Bcl-x$_L$ deamidation pathway is inhibited in CML myeloid cells
 1.3.4 BCR-ABL inhibitor Imatinib reverses the inhibition of Bcl-x$_L$ deamidation pathway in CML myeloid cells
1.3.5 Imatinib does not reverse the inhibition of Bcl-x_L deamidation pathway in Imatinib- resistant CML cells that carry an E255V mutation in the BCR-ABL kinase domain

1.3.6 Bcl-x_L deamidation pathway is inhibited by Jak2^{V617F} in PV myeloid cells

1.3.7 Jak 2 inhibitor reverses the inhibition of Bcl-x_L deamidation pathway in PV myeloid cells

1.3.8 Bcl-x_L deamidation pathway in Jak2^{V617F}-positive Idiopathic Myelofibrosis (IMF)

1.4 Tyrosine kinases in other haematological malignancies- potential research interests and therapeutic targets

Chapter 2. Critiques/Reflection

2.1 Asn 52/66 issues

2.2 Global effects of alkalinisation

2.3 Protein modification in signal transduction

Chapter 3. Conclusion and Future Work
Fig 1. Key experiments in the progress of this project

The project encompassed three stages, which were represented in three time lines. A key experiment (represented as a yellow arrow symbol) in each stage, which has been critical in the development of this project, is also shown.

Key experiment 1. DNA damage-induced Bcl-xL deamidation is inhibited by oncogenic Lck^{FS05}, Fig 7A, Zhao R 2004

Key experiment 2. Bcl-xL deamidation induced by DNA damage involves up-regulation of the NHE-1 antiport, Fig 4, Zhao R 2007

Key experiment 3. Inhibition of the NHE-1/ Bcl-xL deamidation pathway induced by DNA damage in Chronic Myelogenous Leukaemia cells, Fig 1, Zhao R 2008
SUMMARY

I have been interested in the molecular mechanisms of Haematopoietic malignant diseases such as leukaemia and lymphoma, especially those involving oncogenic tyrosine kinases. About 30 of the 90 tyrosine kinases in the human genome have been implicated in cancer (Blume-Jensen P, 2001). The oncogenic tyrosine kinases (OTKs), such as Bcr-Abl (product of chromosomal translocations of two genes bcr and abl) in Chronic Myelogenous Leukaemia, and Erythroblastic leukaemia viral oncogene homolog 2(Erb-B2) in mammary and other cancers, mediate their transforming effects via a diverse array of signalling pathways involved in DNA damage, cell survival and cell cycle regulation (Deutsch E, 2001; Skorski T, 2002; Kumar R, 1996)

My work has been centred around the analysis of a mouse cancer model that is driven by an oncogenic tyrosine kinase – p56 Lck-F50S expressed on CD45 knock-out background (Baker M, 2000). The investigation of this mouse model has revealed that oncogenic inhibition of deamidation of the Bcl-x_L survival protein plays a critical role in protecting thymocytes from DNA-damage induced apoptosis. Cells that would normally be eliminated due to accumulating DNA damage are instead preserved with an increasing load of double-stranded breaks, leading to genomic instability, chromosomal abnormalities and transformation. This work was published in Cancer Cell (An oncogenic tyrosine kinase inhibits DNA repair and DNA-damage-induced Bcl-x_L deamidation in T cell transformation. Zhao R, 2004). Following that I have tried to elucidate the different roles of the two deamidated species of Bcl-x_L in apoptosis, and also the molecular mechanisms of DNA damage- induced Bcl-x_L deamidation in order to understand the inhibition of Bcl-x_L deamidation by oncogenic tyrosine kinases. Recently I have shown that Bcl-x_L deamidation, whereby two critical Asn residues are converted to iso-Asp, cripples the ability of the protein to sequester pro-apoptotic BH3-only proteins such as Bim and p53- upregulated modulator of apoptosis (PUMA), thereby explaining its loss of pro-survival functionality. In vivo, DNA damage causes intracellular alkalinisation that is both necessary and sufficient to deamidate Bcl-x_L, promoting apoptosis: no enzyme is necessary for this process. In pre-tumourigenic thymocytes alkalinisation is blocked, so preserving Bcl-x_L in its pro-survival mode.
Furthermore murine tumours are protected from genotoxic attack by native Bcl-x\textsubscript{L}, but enforced alkalinisation and consequent Bcl-x\textsubscript{L} deamidation promotes apoptosis. This part of work was published in Plos Biology (DNA damage-induced Bcl-x\textsubscript{L} deamidation is mediated by NHE-1 antiport regulated intracellular pH. Zhao R, 2007).

Through collaboration with Prof AR Green’s research group at the Department of Haematology of the University of Cambridge, I have also analysed the Bcl-x\textsubscript{L} deamidation pathway in human myeloproliferative disorders, e.g. Polycythemias vera (PV) and Chronic Myelogenous Leukaemia (CML). We found that the oncogenic tyrosine kinases involved in these disorders, i.e. Jak2V617F and Bcr-Abl also inhibit the Bcl-x\textsubscript{L} deamidation pathway in DNA damage responses. These findings shed light on potential therapeutic application of the Bcl-x\textsubscript{L} deamidation pathway in human malignancies. This piece of work was recently published in the New England Journal of Medicine (Inhibition of the Bcl-x\textsubscript{L} deamidation pathway in myeloproliferative disorders. Zhao R, 2008).

Overall the cited work has led to several important new insights into the molecular mechanisms involved in oncogenesis: first, that Bcl-x\textsubscript{L} deamidation is important in the cascade of events leading from DNA damage to apoptosis; second, that oncogenic tyrosine kinases inhibit these events in both the murine and human context; third, that up-regulation of the NHE-1 antiport and consequent intracellular alkalinisation are critical events in this DNA damage-induced cascade leading to apoptosis. In the process I have demonstrated the first in vivo mechanism for the deamidation of an internal protein Asn. Essentially, a completely new and unexpected signalling pathway has been uncovered that seems to pertain to all murine and human haematopoietic cell lineages that have been investigated so far.
INTRODUCTION

Tyrosine kinases play important roles in cellular function. They normally behave as tightly regulated switches in the signal transduction network, however they also have the potential to induce oncogenic transformation.

Receptor tyrosine kinases (RTKs) such as EGFR and Erb-B2, are composed of an extracellular ligand binding domain, a transmembrane domain, and a cytoplasmic domain that contains a catalytic kinase core and regulatory sequences (Schlessinger, 2000). RTKs have three general mechanisms to become oncogenic. Firstly, genomic rearrangements can generate fused proteins that maintain the kinase in a more stable manner; Secondly, gene amplification leads to spontaneous dimerisation that stabilizes the kinase; Finally, some RTKs acquire point mutations that allow them to dimerise and stabilize (Blume-Jensen and Hunter, 2001).

Non-receptor tyrosine kinases, such as Src, Lck and Abl, lack extracellular and transmembrane domains. Their mechanisms of oncogenic activation are varied. Some become constitutively active by fusion to a dimerising partner, while others are transformed to onco-proteins by acquiring mutations that disrupt autoinhibitory functions (Blume-Jensen and Hunter, 2001).

Oncogenic Tyrosine Kinases (OTKs) are extensively involved in cancer by promoting proliferation, invasion, and metastasis. Compared to other onco-proteins, OTKs are unique in that they tend to render cells extraordinarily resistant to DNA damage-induced apoptosis (Skorski T, 2002). This is demonstrated clinically that cancers that express OTKs are usually highly resistant to radio- and chemo-therapy. This clinical observation has attracted great interests from clinicians and researchers. The resistance, although likely contributed by several mechanisms, has been found consistently linked with markedly increased Bcl-xL expression (Kumar R, 1996; Amarante-Mendes GP, 1998; Karni R, 1999; Zamo A, 2002).

Bcl-xL is an anti-apoptotic member of the Bcl-2 family. Like Bcl-2, Bcl-xL is believed to act by binding and sequestrating BH3-only proteins such as Bim, thereby
preventing their pro-apoptotic interactions with Bax (Cheng EH, 2001; kuwana T, 2002). Bcl-xL deamidation in response to DNA damage has been recently proposed as a critical switch to subvert the pro-survival function of Bcl-xL (Deverman BE, 2002).

P56Lck is a member of src family tyrosine kinases expressed predominantly in T thymocytes. Lck is constitutively located to membranes as a result of modification of amino acid residues close to the N-terminus that are sites of myristoylation/palmitoylation (Kabouridis PS, 1997). The N-terminal domain contains a di-cysteine motif that is required for association with the CD4 and CD8 coreceptors (Kim PW, 2003). As with other src-family kinases, the regulation of kinase activity/functionality is tightly controlled by conformational changes arising from binding of ligands to the SH3 and/or Sh2 domains of the kinases (Holdor AD, 1999; da silva AJ, 1997) and by the phosphorylation and dephosphorylation of two critical tyrosine residues (Palacios EH, 2004).

Earlier studies (Koretzky GA, 1990; Shiroo M, 1992; Kishihara K, 1993; Byth KF, 1996; Mee PJ, 1999) have established both positive and negative roles for CD45 in controlling the signaling threshold of T-cell antigen receptor (TCR), thereby regulating T-cell development (Alexander DR, 2000). Mice expressing active LckF505 at non-oncogenic levels develop aggressive thymic lymphomas on a CD45 null background (Baker M, 2000). CD45 suppresses the tumourigenic potential of the kinase by dephosphorylation of the Tyr394 autophosphorylation site (Baker M, 2000; Alexander DR, 2000). In CD45−/− thymocytes the kinase is switched to hyperactive oncogenic state, resulting in increased resistance to apoptosis. Transformation occurs in early CD4-CD8- thymocytes during the process of TCR-β chain rearrangement by a recombinase-independent mechanism (Baker M, 2000).
Fig 2. A model explaining the interaction between CD45 and various phosphorylated sites of \(p56^{Lck} \) in CD45+ve and CD45-ve cells. Overall CD45 acts as both a positive and negative regulator of immune cells function. Phosphorylation of Tyr 394 increases \(p56^{Lck} \) kinase activity, while phosphorylation of Tyr 505 decreases \(p56^{Lck} \) kinase activity.
CHAPTER 1. CHRONOLOGY OF RESEARCH INTERESTS

1.1.1 Aim and strategy

The first part of my work (Zhao R, 2004) was aiming to elucidate the mechanisms involved in the tumourigenesis of CD45\(^{-/-}\) Lck\(^{F505}\) mice, progeny produced by crossing CD45\(^{-/-}\) mice and Lck\(^{F505}\) mice, instigated by the interesting phenomenon that thymic tumours develop in these mice with a 100% penetrance at a quite early age, i.e. 5-15 weeks. As a contrast, the parental CD45\(^{-/-}\) and Lck\(^{F505}\) mice do not develop tumours during their whole life span.

In an earlier published work from Dr DR Alexander’s group (Baker M, 2000), CD45\(^{-/-}\) Lck\(^{F505}\) mice were phenotypically characterised, with comparisons to wild- type, CD45\(^{-/-}\) and Lck\(^{F505}\) mice in respective of the thymic development and differentiation. Higher kinase acitivity of Lck\(^{F505}\) was proposed to be the origin of the tumourigenesis, however the mechanisms behind this were obscure.

Intrigued by the dramatic tumour development in CD45\(^{-/-}\) Lck\(^{F505}\) mice, I joined Dr Alexander’s group in early 2002, with a medical background in Haemato-oncology, hoping to discover the mechanisms entailed by the oncogenic tyrosine kinase Lck\(^{F505}\). The strategy I used in the study was to analyse the signalling pathways that might be involved in the transformation in pre- tumourigenic double- negative (DN) thymocytes in relation to Lck\(^{F505}\) activity and function.

1.1.2 Kinase activity

Initially, the phosphorylation status and kinase acivity of Lck in CD45\(^{-/-}\) Lck\(^{F505}\) DN thymocytes were analysed in detail. For technical simplicity, I took the advantage of having the above mice on Rag\(-/-\) background in-house. Rag\(-/-\) and Rag\(-/-\)CD45\(-/-\) mice only produce DN thymocytes in their thymus. It is noteworthy that it has been shown in the previous study (Baker 2000) that deletion of Rag does not confer any changes to the tumour development of CD45\(^{-/-}\) Lck\(^{F505}\) mice.
There are two regulatory sites in wild-type Lck that are important for the kinase activity: pTyr-394 and pTyr-505, of which pTyr-394 is a positive regulatory site, while pTyr-505 a negative one. CD45 tyrosine phosphatase dephosphorylates both sites, keeping Lck activity at an appropriate level and with normal function. However, in LckF505 Tyr 505 is mutated to Phe, causing a non-regulatory site at the end of Lck. CD45 cannot dephosphorylate this site, thus the overall kinase activity in LckF505 is lower than in wild-type Lck. However in the absence of CD45, i.e. CD45−/−, LckF505 has an increased activity (Alexander DR, 2000).

Phosphorylation studies on the immunoprecipitated Lck protein from Rag−/−CD45−/− LckF505 DN thymocytes showed an increased phosphorylation of Tyr 394 and deceased phosphorylation of Tyr 505 respectively. In vitro kinase assay on the same material revealed a 2-3 fold increase of the kinase activity. The results were consistent with previous study and current understandings of the CD45/Lck interaction. Kinase activities in DN thymocytes can be defined as basal (Rag−/−), intermediate (Rag−/−CD45−/− or Rag−/−LckF505), or hyperactive (Rag−/−CD45−/− LckF505).

1.1.3 Survival and cell-cycle progression

I considered the commonest signalling pathways that might be involved in oncogenesis to start with, i.e. those relating to cellular survival and cell-cycle control. Both analyses were performed on gated DN3 and DN4 thymocytes by flow-cytometry (FACs). A pool of monoclonal antibodies conjugated with different fluorescent dyes allows analysis of DN3/DN4 subsets with relatively small number of cells.

Not surprisingly, Rag−/− thymocytes had a high level of apoptosis and a significant growth arrest due to a complete failure of β-selection and lack of pre-TCR mediated mitogenic signals. This made Rag−/− mice and its CD45−/− and CD45−/−LckF505 crosses most useful in addressing these points. Compared with Rag−/−, Rag−/−CD45−/− thymocytes had much less apoptosis—29.6% compared to 97.3%. While in Rag−/−LckF505 and Rag−/−CD45−/−LckF505, the reduction of apoptosis was even more significant—both of them had less than 1% of apoptotic cell in their DN3.
compartment of the thymocytes. Likewise, there were more cells in G2 phase in Rag⁻/⁻ CD45⁻/⁻ than in Rag⁻/⁻ DN3- 7% compared to 2-4%, whilst in Rag⁻/⁻ Lck⁻⁵⁰⁵ and Rag⁻/⁻ CD45⁻/⁻ Lck⁻⁵⁰⁵, cells in cycle were increased to nearly 30%.

The results described imply that the “intermediate activity” Lck in Rag⁻/⁻ Lck⁻⁵⁰⁵ and the “hyperactive” Lck in Rag⁻/⁻ CD45⁻/⁻ Lck⁻⁵⁰⁵ have similar effects on the survival and cell cycle progression of DN3 thymocytes, though the former is non-oncogenic and the latter is oncogenic. This suggests that “intermediate activity” Lck is sufficient for keeping the normal survival and cell cycle progression of thymocytes. Since “hyperactive” Lck has 2-3 fold increase of the kinase activity compared to “intermediate activity” Lck, this begs the question: what is the role of the increased kinase activity? There must be something extra conferred by the “hyperactive” Lck to transform the thymocytes into cancerous phenotype.

One point to argue here is that the link between kinase activity and apoptosis in DN3 thymocytes might be casual. However, as we know Lck⁻⁵⁰⁵ mice with a higher copy number of the transgene, and consequently a higher kinase activity, develop thymic lymphoma in a way similar to CD45⁻/⁻ Lck⁻⁵⁰⁵ mice. The evidence demonstrates an exquisitely sensitive link between Lck kinase activity and the cellular survival and cell cycle progression of DN thymocytes.

1.1.4 DNA repair and genomic instability

It is believed that accumulation of unrepaired double strand breaks (DSBs) can cause genomic instability and secondary mutations, which are an important source of transformation. Thymocytes are known to be sensitive to genotoxic drugs and irradiation. So the DNA repair pathway is another potential candidate to investigate (Khanna KK, 2001; Richardson C, 2000).

My first test of the DNA repair pathway was to give same gamma-irradiation to the cells, then leave them to repair and measure the repair efficiency at 6h and 24h. Irradiated cells were cast into agarose plugs, and proteins were digested with proteinase K. DNA containing DSBs were separated from intact DNA by pulse field
gel electrophoresis (PFGE) technique (Bassing CH, 2003). The results were striking—wild-type, CD45−/− and LckF505 DN thymocytes showed similar repair efficiency at multiple time points, whilst CD45−/−LckF505 expressed a much more reduced repair of DSBs over a 6h or 24h time course.

The results were encouraging in the way that difference between non-oncogenic and oncogenic “hyperactive” Lck was first revealed. To ensure that this is a true phenomenon, the finding was vigorously tested with various methods. Phosphorylation of H2AX was measured by western blots and also FACs as phosphorylated H2AX (γH2AX) was thought to be a sensitive marker of the DSBs in the chromosomes following DNA damage (Bassing CH, 2003; Rogakou EP, 1998). The results showed a dramatic increase of γH2AX in untreated CD45−/−LckF505 DN thymocytes, suggesting that at basal conditions more DSBs were accumulating in the cells, possibly due to the DNA repair deficiency.

DSBs are a source of genomic instability, which can be assessed by karyotype analysis with chromosomal painting. This was achieved through collaboration with Dr F.T. Yong at the Veterinary School of the University of Cambridge (Yang FT, 1995). In pre-tumorigenic DN thymocytes, we detected multiple chromosomal abnormalities in 5 Rag−/− CD45−/−LckF505, but no aberrations were found in 43 wild-type, CD45−/− or LckF505 DN thymocytes. In transformed cell lines from the CD45−/− LckF505 thymic tumours (Matt cell lines), chromosomal abnormalities were also detected. These results provided strong evidence of the genomic instability caused by the “hyperactive” Lck in CD45−/−LckF505 DN thymocytes.

The results together demonstrate a striking correlation between inhibition of DNA repair and genomic instability in CD45−/−LckF505 DN thymocytes expressing oncogenic Lck.
1.1.5 DNA damage- induced apoptosis

Since DNA repair mechanisms were inhibited in CD45−/−LckF505 DN thymocytes, this begged the following question: what is keeping these cells with DSBs alive; and expanding? I hypothesised whether the apoptotic pathway is disrupted in these cells.

The survival profile was analysed in the cells that were exposed to ionising irradiation or etoposide (Fig 4, Zhao R, 2004). The results showed that only in the thymocytes expressing oncogenic Lck, was there a powerful survival signal protecting the cells from apoptosis. This was a very interesting finding. It seemed that a “double whammy” mechanism was functioning behind the transformation of these cells. On the one hand, cells were prone to accumulation of DSBs, which were possible source of further mutations; on the other hand, the cells were waivered from the deadly consequence, so the cells with loads of DSBs could grow, proliferate and expand.

1.1.6 Examining the survival pathway in CD45−/−LckF505 DN thymocytes in DNA damage response

In normal thymocytes, a hallmark of DNA damage is the induction and activation of p53 pathway. P53 transcription factor is up-regulated by ATM and ATR serine/threonine kinases, which are activated by DNA damage signals, probably through γH2AX. P53, as a transcription factor, initiates apoptotic pathway mediated by Bax; and cell cycle arrest through p21WAF1 (Sherr CJ, 2002; Vousden KH, 2002).
Fig 3. A diagram to show the signalling network involving p53 and downstream effectors, and putative mechanisms how hyperactive Lck affects the various pathways. DNA damage induces phosphorylation of p53, which stabilises p53 and subsequently drives cells into apoptosis by promoting p21\(^\text{WAF1}\) mediated cell cycle arrest, inducing up-regulation of BH3-only proteins Puma and Noxa, and increasing expression of pro-apoptotic protein Bax directly. Hyperactive Lck could exert its function by targeting at the various pathways or molecules.

I compared the phosphorylation, induction of p53, and the downstream effectors Bax and p21\(^\text{WAF1}\) between non-oncogenic Lck expressing and oncogenic Lck expressing cells. On finding no significant difference in all the aspects, I concluded that the p53 machinery was functioning normally in CD45\(^{-}\)/Lck\(^{F505}\) DN thymocytes in DNA damage response (Fig 2, Zhao R, 2004).

Moving down from p53 to the mitochondria apoptotic machinery, key molecules involved in the caspase execution cascade were also examined. In mammalian cells, cytochrome c initiates caspase activation following its release from mitochondria, it
also forms an active apoptosome complex with Apaf-1, which activates procaspase-9, which in turn activates caspase-3. Active caspase-3 can cleaves poly(ADP-ribose)polymerase (PARP) to yield an inactive form of PARP.

Fig 4. A diagram showing various molecules involved in the mitochondrial apoptotic pathway and the possible roles that hyperactive Lck plays in this signalling network.

Starting from PARP I found that the cleavage of PARP was clearly blocked in CD45^{-}Lck^F505 DN thymocytes that were exposed to DNA damage. This suggested that caspase-3 might not be activated properly. Next, I examined caspase-3 status in these cells under the same condition, and the results were again striking- caspase-3 was not cleaved hence not activated, suggesting that the active apoptosome complex comprised of cytochrome c and Apaf-1 was not formed. This pointed to the possibility of inhibition of cytochrome c release from mitochondria, which had been
reported as a critical switch in the initiation of apoptosis (Zou H, 1999; Wang X, 2001).

In order to measure the quantity of released cytochrome c from mitochondria, subcellular fractionation on the cells was carried out and mitochondria (M) and cytosol (C) fractions were purified. The quantities of cytochrome c in these two fractions were measured by immunoblotting with an anti-cytochrome c antibody. In CD45−/−LckF505 DN thymocytes, cytosolic fraction of cytochrome c was greatly reduced. By re-probing the same gel membrane with a Bax antibody, I found that Bax was mostly located in cytosolic fraction instead of mitochondrial fraction in these cells.

Bax is a BH3-only protein that translocates from cytosol to mitochondria upon apoptotic signals, promoting release of cytochrome c from mitochondria (Gross A, 1998). A conformational change in Bax precedes its translocation to mitochondria. An antibody (6A7 mab) recognises an epitope in its N-terminus that becomes exposed during apoptotic signalling (Hsu YT, 1998; Nechushtan A, 1999). I therefore examined the conformational status of Bax by utilising this antibody. Naïve Bax was immunoprecipitated by 6A7 mab, the quantity of which was then measured by immunoblotting with a Bax antibody. While in CD45−/−LckF505 DN thymocytes, DNA damage induced no conformational change of Bax, it was clearly opposite in wild-type, CD45−/− and LckF505 DN thymocytes.

Previous study on mitochondrial apoptosis and Bcl-2 family molecules suggested that anti-apoptotic proteins such as Bcl-2 and Bcl-\(x_L\) bind and sequester BH3-only proteins, e.g. Bid and Bim, thereby preventing their pro-apoptotic interactions with Bax (Cheng EH, 2001; Kuwana T, 2002). As Bcl-2 levels were similar in the DN thymocytes from the four mouse lines (previous unpublished work from Dr Alexander’s group), I focused my interest on Bcl-\(x_L\), which is known to be well-expressed in immune cells. In DN thymocytes, Bcl-\(x_L\) expression was increased similarly in both Rag\(^{-/-}\) LckF505 and Rag\(^{-/-}\) CD45\(^{-/-}\)LckF505 mice, compared to controls. This still does not explain why tumours develop in (Rag\(^{-/-}\)) CD45\(^{-/-}\)LckF505 mice, but not in (Rag\(^{-/-}\)) LckF505 mice.
Interestingly Bcl-xL deamidation in response to DNA damage had been proposed as a critical switch to subvert the pro-survival function of Bcl-xL (Deverman BE, 2002). I therefore studied the Bcl-xL deamidation status in response to DNA damage in the above four mouse lines. I found that Bcl-xL deamidation was inhibited in CD45−/− LckF505 mice, while it clearly occurred in control mice. This result provided the most convincing evidence of how oncogenic LckF505 subverted the apoptotic pathway, although the mechanism of how Bcl-xL was deamidated per se was still not clear.

Protein deamidation occurs spontaneously at Asn residues, which are flanked, on the α-carboxyl side, by small non-bulky residues, such as Gly, Ala, Ser or Thr (Robinson NE, 2001). The nucleophilic attack of the peptidyl nitrogen of the Asn+1 residue onto the β-carbonyl carbon of the Asn, leads to the formation of an aspartyl succinimidyld intermediate, with the elimination of the ammonia moiety. The aspartyl succinimidyld intermediate itself is unstable and its ring can open on either side of the nitrogen atom, yielding either a normal peptide or an atypical isopeptide containing a β-linked isoaspartyl residue (isoAsp), the latter form being generally predominant (Asward DW, 2000).

![Fig 5. Mechanism for deamidation of asparaginyl residues in peptides. (Fig. from Climmino A, 2008)](image)

(Step 1): the nitrogen of the Asn+1 residue (a Gly in the example) attacks the β-
carbonyl carbon of the Asn, thus forming the succinimidyl derivative of the peptide (ASU) with the ammonia elimination. The ASU ring can open spontaneously on either side of the nitrogen atom. In one case the α-aspartyl peptide is formed (Step 2). In the other case the β-isoaspartyl peptide does occur (Step 3).

Fig 6. A model integrating the findings on the DNA damage response, cell survival and cell-cycle progression in cells with various Lck kinase activity.

Pathway A refers to signals that are common to both intermediate activity Lck (as in DN CD45⁻/⁻Lck F505 thymocytes). Pathway B and C are unique to the oncogenic hyperactive Lck found in DN CD45⁻/⁻Lck F505 thymocytes. (Zhao R, 2007)
1.2 How is Bcl-x_L deamidated in DNA damage responses?

This is the main question to be answered in the next part of work (Zhao R, 2007). To answer this question would be the key to understanding how oncogenic tyrosine kinases interact with the Bcl-x_L deamidation pathway, and potentially, uncovering new strategies in cancer treatment.

1.2.1 Elucidation of the roles of different species of Bcl-x_L by in vitro and in vivo studies

Initial work from the Weintraub laboratory suggested that when Asn52 and Asn 66 were both mutated to Asp, Bcl-x_L lost its ability to bind that BH3-only pro-apoptotic protein Bim, thereby providing a putative link between DNA damage and apoptosis (Deverman BE, 2002). However, a secondary mutation was later identified, which, when corrected, enabled the N52D/N66D Bcl-x_L to bind Bim, casting doubt on this interpretation (Deverman BE, 2003). As the sequestration of BH3-only proteins by Bcl-x_L was thought to explain its anti-apoptotic function (Cheng EH, 2001), resolution of this question was clearly important for establishing a molecular link between DNA damage and apoptosis.

To address this point, a series of cellular and biochemical experiments were carried out. First of all, whether deamidated forms of Bcl-x_L bind to NH₃-only proteins needed to be elucidated. In the previous work (Zhao R, 2004), Bim could only immuno-precipitate Bcl-x_L protein from the lysates of CD45^{-/-} Lck^{F505} thymocytes which had been treated with etoposide, and also Bcl-x_L pulled down much more Bim from the CD45^{-/-} Lck^{F505} thymocyte lysates, suggesting that deamidation crippled the ability of Bcl-x_L to bind Bim. However, Weintraub’s correction showed that mutated N52D/N66D Bcl-x_L was still able to bind Bim. The discrepancy might have been caused by the following reasons: A) The amount of protein Bim may be different between CD45^{-/-} Lck^{F505} and other non-tumourigenic mice; B) DNA damage/etoposide treatment may induce different amount of Bim; and C) N52-iso D/N66-iso D Bcl-x_L does not bind Bim, although N52D/N66D Bcl-x_L does bind Bim.

Points A and B were easily eliminated by thorough Bim/ Bcl-x_L binding experiments
(Fig7B, Zhao R, 2004; Fig 2 A& B, Zhao R, 2007), in which the native and deamidated Bcl-xL species were also tested separately for their binding ability with Bim, and the results clearly indicated that deamidated Bcl-xL, including both the N52D/N66D and N52-iso D/N66-iso D Bcl-xL forms, lost most of its ability to bind Bim in vivo. Recombinant Bcl-xL also lost part of its binding to Bim when one site was deamidated, and lost most of its binding when two sites were deamidated. I also tested the binding of N52D/N66D Bcl-xL form to Bim in thymocytes, which confirmed what Weintraub’s laboratory had claimed.

Collectively, the results supported the hypothesis C that N52-iso D/N66-iso D Bcl-xL does not bind Bim, although N52D/N66D Bcl-xL does bind Bim. If physiologically N52-iso D/N66-iso D Bcl-xL exists as the dominant form, it would not be surprising to see that deamidated Bcl-xL loses most of its ability to bind BH3-only proteins. Consistently, previous literature on protein deamidation showed that when an Asn is converted to a mixture of Asp and iso-Asp, the ratio of Asp/iso-Asp is about 1:5 (Robinson NE, 2001). To confirm this was applicable to Bcl-xL deamidation, it was necessary to measure the ratio of Asp/iso-Asp at Asn52 and Asn66. This was achieved by Mass Spectrometric analysis. Respective peptides were designed and synthesised, which encompass Asn 52/ Asn 66 and their corresponding Asp/ iso-Asp forms as identifiers of these species in the same peptides digested from recombinant Bcl-xL. The results showed that the ratios of Asp/iso-Asp for Asn 52 and Asn66 were 10:1 and 5:1, respectively.

Taken together, my results showed that conversion of Bcl-xL Asn 52 and Asn 66 to iso-Asp forms, but not Asp counterparts, prevented sequestration of BH3-only proteins. In fact deamidation of Bcl-xL to iso-Asp causes greater perturbation of protein structure than conversion to Asp (Aritomi M, 1997), presumably explaining its loss of BH3-only protein binding ability.

1.2.2 Is Bcl-xL deamidation a consequence of mitochondrial apoptosis?

Whether Bcl-xL deamidation is a cause or a consequence of apoptosis is an obvious and important point to elucidate. Clearly if Bcl-xL deamidation is a cause of
apoptosis, it will play a more critical role in thymic transformation than being a consequence of apoptosis.

This was addressed by using a caspase inhibitor Z-VAD-fmk, which can effectively block the occurrence of apoptosis in thymocytes (Fig 1a&b, Zhao R, 2007). In the cells treated with etoposide, and with or without Z-VAD-fmk, Bcl-x_L deamidation occurred at similar levels, suggesting that Bcl-x_L deamidation was not a consequence of apoptosis.

As Bax and Bak are required in apoptosis mediated by BH3-only proteins, I also tested whether depletion of Bax or Bak could block Bcl-x_L deamidation. Thymocytes were transfected with shRNA for Bax or Bak prior to exposure to DNA damage. As shown in Fig 1c (Zhao R, 2007), neither the depletion of Bax or Bak affected the occurrence of Bcl-x_L deamidation.

1.2.3 The DNA damage- NHE-1 up-regulation- intracellular alkalinisation-Bcl-x_L deamidation axis

How DNA damage caused Bcl-x_L deamidation was a completely unexplored area when we started to think about it in early 2006. It was not surprising though as the link between DNA damage and Bcl-x_L deamidation was just revealed in late 2002 (Deverman BE, 2002).

It has been known that protein Asn deamidation is accelerated by increased pH in vitro. Antiport Sodium-Hydrogen-Exchanger family member 1 (NHE-1) is responsible for maintaining the intracellular pH in thymocytes. It seemed to be the only clue to follow. The hypothesis would be that DNA damage induces NHE-1 mediated intracellular pH (pHi) change. A quick test of this hypothesis was to check whether DNA damage could induce any change in NHE-1, which could potentially cause intracellular alkalinisation.

Many types of stimuli induce phosphorylation of NHE-1 and thus increase its activity. I believed that it might be the same case in DNA damage response. Therefore I tried
to check the phosphorylation status of NHE-1 in DNA damaged thymocytes. Using a set of anti-phospho antibodies against known phosphorylation sites in NHE-1, I could not find altered phosphorylation of NHE-1 after DNA damage. However, I noticed on the western blots that the NHE-1 expression level was increased after DNA damage. It was an interesting finding although there was not much emphasis on the role of NHE-1 protein expression level in its function in previous literature.

In parallel I tried to measure the intracellular pH (pHi) before and after DNA damage. Using a pH- sensitive fluorescent dye SNARF-1, pHi can be measured by FACS. It was encouraging to find that pHi consistently was increased in DNA damaged cells. This increase in pHi was about 0.4-0.5 units, which was both necessary and sufficient to cause Bcl-xL deamidation in the cells without exposure to DNA damage. These results were achieved by artificially changing the pHi in the cells and then examining the Bcl-xL deamidation status.

Whether it was just a casual link between up-regulation of NHE-1 protein level and intracellular alkalinisation or whether NHE-1 up-regulation caused intracellular alkalinisation needs to be clarified before drawing a conclusion on the mechanism of Bcl-xL deamidation. This entailed a series of experiments. In summary, I had shown (Fig 4&5, Zhao R, 2007):

a) DNA damage- induced Bcl-xL deamidation requires de novo protein synthesis.
b) DNA damage causes up-regulation of NHE-1 in wild- type but not in CD45^{-/-} Lck^{F505} thymocytes.
c) NHE-1 over-expression by retroviral transfection causes intracellular alkalinisation and Bcl-xL deamidation.
d) NHE-1 function blockage by specific inhibitor (DMA) blocks intracellular alkalinisation and Bcl-xL deamidation.
e) NHE-1 gene knock- down by shRNA also blocks intracellular alkalinisation and Bcl-xL deamidation.

Collectively the combined evidence strongly supports a model whereby DNA damage- induced Bcl-xL deamidation is mediated by NHE-1 antiport regulated intracellular alkalinisation. The current model is equally applicable to fully-
transformed cells- i.e. CD45^{-/-}Lck^{F50S} tumour cells, and human Chronic lymphoblastic leukaemia (CLL) cells, though the former express an OTK, the latter do not.

Fig 7. A novel signaling pathway triggered by DNA damage leads to the up-regulation of the NHE-1 antiport, increased intracellular pH, Bcl-x_L deamidation, and finally apoptosis. (Fig. from Zhao et al, 2007)
1.3 Bcl-\(x_L\) deamidation pathway in Myeloproliferative Disorders (MPDs)

1.3.1 Why investigate Bcl-\(x_L\) deamidation pathway in MPDs?

Bcl-\(x_L\) plays important roles in many tumour types (Amundson SA, 2000), including MPDs. My finding on deamidation of Bcl-\(x_L\) in DNA damage responses therefore have potential relevance to cancer therapy, whereby enforced alkalinisation, perhaps by amplification of NHE-1 expression, would promote Bcl-\(x_L\) deamidation, thereby triggering apoptosis.

Relevance of Bcl-\(x_L\) deamidation for human cancers associated with OTKs remained unclear, although DNA damaged- induced Bcl-\(x_L\) deamidation was intact in cell lines of osteosarcoma and cervical, bladder and ovarian cancers, and in primary human lymphoblastic leukaemia cells (Zhao R, 2007).

MPDs are good candidates for studying Bcl-\(x_L\) deamidation pathway because, as a group of human haemotopoietic malignant diseases, many of them express OTKs. Among MPDs, Chronic Myeloid Leukaemia (CML) and Polycythemia vera (PV) are the two seeing most significant breakthroughs in the understanding of their pathological mechanisms. They are associated with the BCR-ABL fusion tyrosine kinase and the Janus tyrosine kinase 2 (JAK2) mutation V617F, respectively. Both disorders initially usually present with chronic diseases, but carry a risk of progression to blastic phase resembling acute leukaemia that resists further therapy (Goldman JM, 2003; Campbell PJ, 2006).

Bcl-\(x_L\) has been shown to be up-regulated in patients with CML and PV and is thought to inhibit apoptosis. BCR-ABL protein expression is associated with a reduced apoptotic response to genotoxic drugs. Moreover, quiescent CML stem cells, thought to be responsible for residual disease, are resistant to apoptosis that tyrosine kinase inhibitors induce. Collectively the combined results suggested there might be an undiscovered link between Tyrosine kinases BCR-ABL and \(\text{Jak}^2\text{V617F}\) and the resistance to DNA damage- induced apoptosis in CML and PV patient myeloid cells.
1.3.2 Patients’ sample collection and cell purification

Access to human samples was made possible by collaboration with Prof. AR Green’s research group at the Department of Haematology, Addenbrooks Hospital, University of Cambridge. The study was approved by the Cambridge and Eastern Region ethics committee. All patients involved provided written informed consent.

Cells of myeloid or lymphoid lineage were purified from peripheral blood samples. The process involves using density separation through centrifugation, followed by immunological targeting to cell surface markers combined with flow cytometry. Unlike using thymocytes from established mouse lines, human samples were precious in terms of how many cells were available and when they were available. This responsibility proved challenging but satisfying, as it constituted a particularly good model system upon which to work.

1.3.3 Bcl-xL deamidation pathway is inhibited in CML myeloid cells

Purified myeloid/ granulocytes from normal subjects and CML patients were treated with etoposide or exposed to γ-irradiation. Then every step in the Bcl-xL deamidation pathway was examined, i.e. NHE-1 expression level change, intracellular pH alteration, Bcl-xL deamidation status and apoptosis of the cells. Results from 6 normal controls and 10 CML patients consistently showed that the Bcl-xL deamidation pathway in DNA damage responses was intact in normal cells while inhibited in CML cells.

T cells purified from the same CML patient samples, as good internal controls, showed no effect on the Bcl-xL deamidation pathway (Suppl Fig 3, Zhao R, 2008). The same CML myeloid cells were subjected to a series of ‘forced alkalinisation’ experiments, where cells were cultured in alkaline medium i.e. pH>8. I found that the resistance to Bcl-xL deamidation was overcome in these cells. It suggested that the inhibition by Bcr-Abl was at the step of up-regulation NHE-1, which was same as in p56LckF505.
The dysfunction of Bcl-\(x_L\) deamidation pathway in CML cells was further examined aiming to identify the critical steps responsible. CML cells were transfected with a retroviral vector carrying NHE-1 cDNA in order to over-express NHE-1 in CML cells. These cells not only became alkalinised intracellularly, but also had more Bcl-\(x_L\) protein deamidated and subsequently apoptosed.

1.3.4 BCR-ABL inhibitor Imatinib reverses the inhibition of Bcl-\(x_L\) deamidation pathway in CML myeloid cells

Imatinib is a very effective BCR-ABL inhibitor. Its application in treating CML patients has been so successful that most CML patients will achieve complete regression. However, a small proportion of CML patients develop resistance to Imatinib by point mutation of the BCR-ABL kinase domain. In my experiments Imatinib-sensitive CML cells were either pre-treated with Imatinib or not, then were exposed to etoposide/irradiation. NHE-1 expression level and Bcl-\(x_L\) deamidation status were examined subsequently. The results were clear that Imatinib completely reversed the inhibition of Bcl-\(x_L\) deamidation in these CML cells.

1.3.5 Imatinib does not reverse the inhibition of Bcl-\(x_L\) deamidation pathway in Imatinib-resistant CML cells that carry an E255V mutation in the BCR-ABL kinase domain

Although Imatinib is known to be a very specific BCR-ABL kinase inhibitor, it also inhibits a few other kinases. Strictly speaking, the above reversion of the inhibition of Bcl-\(x_L\) deamidation pathway might possibly be due to the other effects of Imatinib.

At this point I managed to obtain an imatinib-resistant CML sample, which carried an E225V mutation in the BCR-ABL kinase domain. The same experiments were performed with this sample. Strikingly, the reversion of the Bcl-\(x_L\) deamidation pathway did not occur. Furthermore, the same cells were transfected with a NHE-1 vector using a Nucleofector kit. NHE-1 was over-expressed in these cells, which subsequently caused intracellular alkalinisation and Bcl-\(x_L\) deamidation.
This series of experiments involving Imatinib sensitive and resistant CML cells strongly support the critical role of BCR-ABL in the inhibition of Bcl-x\textsubscript{L} deamidation pathway in CML.

1.3.6 Bcl-x\textsubscript{L} deamidation pathway is inhibited by Jak2V617F in PV myeloid cells

Likewise, in a series of similar experiments, Jak2V617F in PV myeloid cells exhibited its role in blocking the DNA damage- induced NHE-1/Bcl-x\textsubscript{L} deamidation pathway, i.e. NHE-1 up-regulation, intracellular alkalisation, Bcl-x\textsubscript{L} deamidation and apoptosis. T cells purified from the same PV patient samples, as good internal controls, showed no effect on the Bcl-x\textsubscript{L} deamidation pathway (suppl Fig 3, Zhao R, 2008).

1.3.7 Jak 2 inhibitor reverses the inhibition of Bcl-x\textsubscript{L} deamidation pathway in PV myeloid cells

Whilst there were no established specific Jak2 inhibitors available, three inhibitors with different sensitivity and specificity were used. Jak inhibitor 1 (Calbiochem) is a pan- inhibitor of Jak, TG101209 (Targagen) and AT9283 (Astex) are inhibitors currently in clinical trials, which have been shown in cellular experiments inhibiting Jak2 (Prof AR Green unpublished data).

Surprisingly all three Jak2 inhibitors all showed significant effects in inhibiting the Bcl-x\textsubscript{L} deamidation pathway, although one of them was apparently more potent than others. Similarly the PV myeloid cells were subjected to ‘forced alkalisation’ experiments. The resistance to Bcl-x\textsubscript{L} deamidation was also overcome in these cells suggesting that the inhibition by Jak2V617F is at the step of up-regulation NHE-1, which is same as p56LckF505Y and Bcr-Abl.

1.3.8 Bcl-x\textsubscript{L} deamidation pathway in Jak2V617F-positive Idiopathic Myelofibrosis (IMF)
IMF represents a sub-group of diseases in myeloproliferative disorders. Some IMF patients carry Jak2V617F mutations, whereas others do not. Luckily I was able to obtain two Jak2V617F-positive and two Jak2V617F-negative IMF patient samples to study the Bcl-x$_L$ deamidation pathway. The results were very encouraging - the Bcl-x$_L$ deamidation pathway was inhibited in Jak2V617F-positive IMF patient cells. This again supports the correlation of Jak2V617F and the blockage of DNA damage-induced Bcl-x$_L$ deamidation pathway in myeloproliferative disorders.

1.4 Tyrosine kinases in other haematological malignancies - potential research interests and therapeutic targets?

Eight cancer cell lines were also studied, representing different haematologic cancers associated with distinct molecular mechanisms. Among these, K562 expresses Bcr-Abl, HEL expresses Jak2V617F in Jak2V617F and Karpas 299 expresses NPM-ALK, a tyrosine kinase; Daudi expresses c-myc, DU528 expresses Tal1, JVM2 expresses cyclin D1, OPM2 expresses FGFR3 and DOHH2 expresses Bcl-2.

While demonstrated again that Bcr-Abl and Jak2V617F inhibit the NHE-1/Bcl-x$_L$ deamidation pathway, none of the other onco-proteins do, including tyrosine kinase NPM-ALK. So the inhibition of Bcl-x$_L$ deamidation pathway is not a general feature of haematologic cancers and is only mediated by a sub-group of tyrosine kinases or is dependent on a particular cellular context.
CHAPTER 2. CRITIQUES/REFLECTION

2.1. Asn 52/66 issues

Original work from Weintraub laboratory suggested that deamidated Bcl-x\textsubscript{L} does not bind to BH3-only protein Bim. However, this result was later withdrawn due to the identification of a secondary mutation in the original DNA construct used in the experiments. When the secondary mutation was corrected deamidated Bcl-x\textsubscript{L} did bind to Bim (Deverman BE, 2003).

Interestingly, I found that whereas the ability of Bcl-x\textsubscript{L} to bind Bim was ablated in control thymocytes exposed to DNA damage, it was strikingly retained in CD45-/- LckF505 thymocytes, tightly correlating with the resistance to Bcl-x\textsubscript{L} deamidation noted in these cells.

These findings cast doubt on the model that Bcl-x\textsubscript{L} triggers apoptosis because the sequestration of BH3-only proteins by Bcl-x\textsubscript{L} is thought to explain its anti-apoptotic function. Resolution of this question is clearly important for establishing a molecular link between DNA damage and apoptosis. So at an early stage of my project I carried out a series of cellular and biochemical experiments to address this key point, such as, immunoprecipitation of Bim from cell lysates with a Bcl-x\textsubscript{L} antibody or the other way around, and measuring the precipitated proteins by western blots. Recombinant His-tagged Bcl-x\textsubscript{L} was exposed to alkaline conditions to cause partial deamidation and separated by anion exchange chromatography into purified native, singly deamidated and doubly deamidated Bcl-x\textsubscript{L} proteins, and these different species of Bcl-x\textsubscript{L} bound with endogenous Bim in a completely different manner, i.e. native Bcl-x\textsubscript{L} has a maximum binding ability, doubly deamidated Bcl-x\textsubscript{L} does not bind with Bim at all, while singly deamidated Bcl-x\textsubscript{L} lies in between. And interestingly, both the Bcl-x\textsubscript{L} N52A/N66A and N52D/N66D mutants maintain the complete binding ability with BH3-only proteins as the native Bcl-x\textsubscript{L}. Given that most asparagines deamidate to iso-aspartate forms at physiological conditions in cells, it is reasonable to suggest that the change from asparagine to aspartate does not affect the binding with BH3-only proteins, but the conversion from asparagine to iso-aspartate does.
This speculation was also validated by a definitive experiment, which nevertheless, was to prove an established view, was however, critical in the interpretation of the mechanism of Bcl-x_L deamidation. Aspartate and iso-aspartate species of Bcl-x_L were separated from naturally occurred Bcl-x_L mixture by LC-MS chromatography respectively, and their quantities were compared, which confirm that more than 90% of asparagines in Bcl-x_L convert to iso-aspartates, but not aspartates.

2.2. Global effects of alkalinisation

One argument about the NHE-1/ Bcl-x_L deamidation pathway is that intracellular alkalinisation can possibly cause deamidation of other proteins. What roles do they play in apoptosis and transformation? This is a fair argument. I have been trying to address this question in different ways. The most critical evidence is that when Bcl-x_L is mutated to N52A/N66A mutant, a constitutively native form, enforced intracellular alkalinisation does not increase apoptosis. So although the global effect of alkalinisation is inevitably present, its role in apoptosis might be negligible.

The possibility of pH manipulation as a means to cancer therapy has in the past attracted intermittent interest. The pioneering work of Warberg established that tumours display acidic extracellular pH (Warberg O, 1930), although half a century later it was established that the intracellular pH of tumours is comparable with normal cells (Griffiths JR, 1991). My findings suggest that strategies for pH manipulation in anti-neoplastic therapy should continue to receive attention, albeit for reasons different from those envisaged by Warberg.

2.3. Protein modification in signal transduction

Proteins are frequently modified in signal transduction. Modification of proteins confers new function to the molecules and often the proteins with altered function play critical roles in signalling networks. Phosphorylation, methylation, sumoylation etc. have attracted more research attention and indeed demonstrated their importance in protein and cellular function. Deamidation, though universally
occurring in all proteins, has only recently been shown being involved in rapid physiological events, i.e. signal transduction of Bcl-xL. Is it just an individual phenomenon, or revealing a completely new type of protein modification with physiological significance, needs to be elucidated.

A number of cell stress conditions have recently been linked to protein deamidation. Oxidative conditions have been considered as a way through which protein deamidation is facilitated. Protein Isoaspartate Methyltransferase (PIMT) may be able to mediate protection from apoptosis induced by Bax in a neuronal cell line by catalyzing protein methyl esterification (Cimmino A, 2008). PIMT has been shown to be able to prevent isoaspartate accumulation in the Eukaryotic Initiator Factor Binding Protein 2 (4E-BP2), an important factor in learning and memory, in the brain (Bidinosti M, 2010). Deamidation has also been involved in ubiquitination and ubiquitin-dependent degradation of peptides (Cui J, 2010)
CHAPTER 3. CONCLUSION AND FUTURE WORK

Protein deamidation is a naturally occurring process, which increases protein turnover, and has been proposed as a molecular timer of biological events (Robinson NE, 2001). However, the significance of protein deamidation to the cell has never been firmly established. It has been suggested, in respect to the regulation of DNA damage-induced apoptosis, Bcl-xL deamidation may serve as a chronometric buffer, affording the cell time to reverse low-level genotoxic stress-induced events (Deverman BE, 2002). Rapid deamidation of Bcl-xL induced by DNA damage indicates that the deamidation “clock” is a dynamic process that can be regulated in vivo by biological events (Zhao R, 2007).

Bcl-xL is an important pro-survival protein whose potency is emphasised by its protection of a wide range of tumour cells from genotoxic attack (Amarante-Mendes et al., 1998; Amundson et al., 2000; Brumatti et al., 2003). The role of Bcl-xL deamidation in the transformation of OTK- expressing cells is particularly critical, as it explains how these cells gain their survival advantage under extreme conditions- i.e. cytotoxic drugs or gamma-radiation. It also explains why these cells, once they become cancerous, are notoriously resistant to chemo- or radiotherapy.

It is interesting that a few OTKs inhibit the NHE-1/Bcl-xL deamidation pathway, wherease others do not. Further study is needed given the vast number of OTKs involved in human cancer. Finally whether it is applicable to target at the NHE-1/Bcl-xL deamidation pathway warrants attention, although variances are predictable due to biological/cellular complexity.

Future work

There are a number of lines of work that need to be done in order to understand the relationship between OTKs and the NHE-1/Bcl-xL deamidation pathway, and hopefully, to be able to manipulate the components involved in oncogeneis to generate potential new cancer therapy.
The hypothesis that inhibition of DNA-damage induced alkalinisation and Bcl-x\textsubscript{L} deamidation causes transformation needs to be vigorously tested.

Firstly, what is the role of NHE-1 in tumourigenesis? This can be achieved by generating new transgenic/ knock-in mouse models based on the CD45-/-p56Lck-Y505F mouse model. If we can express NHE-1 in the CD45-/-p56Lck-Y505F mouse in a regulatory manner, i.e. tetracycline- controlled expression, then we can observe whether NHE-1 up-regulation can prevent tumour development, and, whether NHE-down- regulation can induce tumour relapse. Tumour growth monitoring can be achieved by using the immunofluorescence/illuminescence technique, which itself will require careful design of the molecular tags.

Secondly, is prevention of Bcl-x\textsubscript{L} deamidation sufficient for transformation? Blockade of the Bcl-x\textsubscript{L} deamidation pathway plays an important role in the transformation driven by three OTKs - LckY505F, Bcr-abl and Jak2V617F. Whether Bcl-x\textsubscript{L} deamidation is directly involved in the transformation process needs to be validated \textit{in vivo}. One way of doing this is to generate a mouse model with the two asparagines in Bcl-x\textsubscript{L} replaced by Alanines so that they are not able to deamidate, i.e. a mouse model with a constitutively “native” Bcl-x\textsubscript{L}. If this mouse is crossed with an OTK model, i.e. CD45-/-p56Lck-Y505F, then the role of Bcl-x\textsubscript{L} deamidation can be tested by subjecting the live mice to DNA damage and monitor tumour occurrence etc.

How NHE-1 expression is regulated following DNA damage also needs to be studied. This is still a mystery so far. NHE-1 expression and modification have been studied in the context of various stimuli, such as growth factors, cytokines, homeostasis, etc. But the link between DNA damage and NHE-1 has not been paid much attention, probably due to the fact that NHE-1, as an antiport, was mainly investigated in cardiovascular diseases (Fliegel L, 2001)

Lacking this important information, it is impossible to understand how the oncogenic tyrosine kinases (e.g. LckY505F, Bcr-abl and Jak2V617F) carry out their abnormal function and drive the transformation of the cells. The increased expression level of NHE-1 could be caused at various stages: 1) messenger RNA level - transcriptional
or mRNA stability, and 2) protein level – translational or protein stability. My preliminary data show that DNA damage triggers increased NHE-1 mRNA levels in wild-type thymocytes, but not in the thymocytes transformed by hyper-active LckF505 (Appendix Fig 7). This suggests that the up-regulation of NHE-1 in response to DNA damage is caused at least in part by increased mRNA. NHE-1 antiport is a well-characterised protein, and regulation of NHE-1 expression in response to multiple stimuli other than DNA-damage has been extensively investigated (Dyck JR, 1995; Yang W, 1996). These investigations have established that NHE-1 expression is mainly regulated by transcription, and a number of transcription binding sites for these other stimuli have been identified in the promoter region of the NHE-1. So it is not premature to hypothesise that in DNA damaged cells NHE-1 increases expression level by transcriptional mechanism.

There is plenty to discover in this completely untouched area—such as, the responsive elements in NHE–promoter and the transcription factors that are critical in initiating the transcription in response to DNA damage signals; the inhibitory mechanisms employed by the OTKs to block the transcription, etc.

Thirdly, but not lastly, any other proteins that could be deamidated by the DNA damage induced intracellular alkalinisation?

A large percentage of proteins deamidate to a substantial extent during their biological life times (Nordhoff E, 1999). Among these spontaneous protein deamidation processes, Bcl-x_L deamidation is the first example of rapid protein deamidation triggered by genotoxic stress, and playing a central role in the regulation of biological process. Other protein deamidation processes might also be promoted following DNA damage. There could be a plenienty of molecules with various roles in cellular physiology that are regulated by deamidation.
APPENDIX

Fig 8. Quantitative RT-PCR results showing the NHE-1 mRNA level (mean values ± SD, n=3) in C57BL/6 and CD45-/Lck^{F505} thymocytes at time 0, 3, 6, 9 h of etoposide treatment. The RT-PCR were run on Bio-Rad Chromo4, and NHE-1 mRNA is normalised for actin mRNA.
REFERENCES

3878-3885.

Published Work

Rui Zhao
DNA Damage–Induced Bcl-x_L Deamidation Is Mediated by NHE-1 Antiport Regulated Intracellular pH

Rui Zhao¹, David Oxley², Trevor S. Smith², George A. Follows³, Anthony R. Green³, Denis R. Alexander^{*1}

1 Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham, Cambridge, United Kingdom, 2 Protein Technologies Laboratory, The Babraham Institute, Babraham, Cambridge, United Kingdom, 3 Department of Haematology, University of Cambridge, Hills Road, Cambridge, United Kingdom

The pro-survival protein Bcl-x_L is critical for the resistance of tumour cells to DNA damage. We have previously demonstrated, using a mouse cancer model, that oncogenic tyrosine kinase inhibition of DNA damage–induced Bcl-x_L deamidation tightly correlates with T cell transformation in vivo, although the pathway to Bcl-x_L deamidation remains unknown and its functional consequences unclear. We show here that rBcl-x_L deamidation generates an iso-Asp⁵²/iso-Asp⁶⁶ species that is unable to sequester pro-apoptotic BH3-only proteins such as Bim and Puma. DNA damage in thymocytes results in increased expression of the NHE-1 Na/H antiport, an event both necessary and sufficient for subsequent intracellular alkalinisation, Bcl-x_L deamidation, and apoptosis. In murine thymocytes and tumour cells expressing an oncogenic tyrosine kinase, this DNA damage–induced cascade is blocked. Enforced intracellular alkalinisation mimics the effects of DNA damage in murine tumour cells and human B-lineage chronic lymphocytic leukaemia cells, thereby causing Bcl-x_L deamidation and increased apoptosis. Our results define a signalling pathway leading from DNA damage to up-regulation of the NHE-1 antiport, to intracellular alkalinisation to Bcl-x_L deamidation, to apoptosis, representing the first example, to our knowledge, of how deamidation of internal asparagine residues can be regulated in a protein in vivo. Our findings also suggest novel approaches to cancer therapy.

Introduction

The deamidation of internal asparaginyl and glutaminyl protein residues has attracted increasing attention over the past decade as a modification leading to significant changes in protein function [1,2]. The protein deamidation rates of more than 18,000 proteins have been computed, containing 230,000 individual asparaginyl residues, generating Asn half-lives of less than 1 d to 50 y or more [3,4]. Protein deamidation has broad biological implications, ranging from changes in the specificity of antigen presentation [5], to modifications in eye lens proteins [6], to the activation of RhoA by cytotoxic necrotizing factor [7], to aging [1], to name but a few examples.

The deamidation of Gln proceeds both enzymatically and nonenzymatically in physiological systems, whereas only the nonenzymatic deamidation of internal Asn residues has been reported, involving conversion to Iso-Asp:Asp in a ratio of about 3:1, with the precise ratio depending on the environment of the Asn residue [1,8]. Deamidation of both Gln and Asn residues in vitro can be greatly accelerated by exposure to either acid or alkaline pH, with minima in the range pH 4–6. Until recently, it was assumed that Asn protein deamidation rates in vivo were set up by a “fixed clock” that was defined only by the primary, secondary, and tertiary structures of proteins that specified the half-life of the particular Asn residue in question. However, this view has been radically changed by the recent observation that DNA damage induces the relatively rapid deamidation of the prosurvival protein Bcl-x_L in an osteosarcoma cell line system [9], indicating that the deamidation “clock”, far from being fixed, is a dynamic process that can be regulated in vivo by biologically critical events. Bcl-x_L deamidation in response to DNA damage occurs at two internal Asn residues (Asn⁵² and Asn⁶⁶), causing a characteristic retardation on SDS-polyacrylamide gel electrophoresis (PAGE) gels [9–12]. Initial work from the Weintraub laboratory suggested that when Asn⁵² and Asn⁶⁶ are both mutated to Asp, then Bcl-x_L loses its ability to bind to the BH3-only pro-apoptotic protein Bim, thereby providing a putative linkage between DNA damage and apoptosis [9]. However, a secondary mutation was later identified, which, when corrected, enabled the N52D/N66D Bcl-x_L to bind Bim, casting doubt on this interpretation [13].

Using a different model system, we have previously implicated the oncogene-mediated inhibition of DNA damage–induced Bcl-x_L deamidation in the transformation of murine thymocytes [14,15]. Our transgenic mouse model of T cell lymphoma was generated by crossing mice lacking
expression of the CD45 tyrosine phosphatase with a line expressing a noncogenic level of the mutant lck^{F505} tyrosine kinase [16]. All the CD45^{−/−}lck^{F505} progeny develop aggressive T cell lymphomas at the early CD4[−]CD8⁺ stage of thymic development, typically at 5–12 wk of age. The absence of CD45-mediated dephosphorylation results in hyperphosphorylation of positive regulatory p56^{lck} pTyr-394, causing hyperactivation of the kinase and triggering oncogenesis [15]. The model enables the investigation of the earliest oncogenic events in primary pre-tumourigenic thymocytes. Inhibition of DNA repair in CD45^{−/−}lck^{F505} mice leads to DNA damage, genomic instability, and chromosomal aberrations detectable in primary CD4[−]CD8⁺ thymocytes before transformation. Despite a normal p53 response, DNA damage-induced apoptosis is suppressed in pretumourigenic thymocytes, correlating with the inhibition of Bcl-xL deamidation, the preservation of Bcl-xL binding to Bim, and the inhibition of cytochrome c release and the apoptotic caspase execution cascade. Therefore, we proposed that Bcl-xL deamidation is a critical switch in oncogenic kinase-induced T cell transformation, and we suggested that Bcl-xL deamidation to an Iso-Asp⁵²/Iso-Asp⁶⁶ version, rather than the mutant N52D/N66D version investigated by the Weintraub laboratory, might be the key step in disabling the antiapoptotic functions of the protein [14,15].

Neither in the osteosarcoma cell line work [9] nor in our own work based on primary thymocytes [15] has there been any indication as to how DNA damage might induce Bcl-xL deamidation. Neither have there been previous reports in the literature showing how protein Asn deamidation in general might be regulated in vivo; we address here this question. We confirm that Bcl-xL deamidation does indeed destroy its ability to sequester pro-apoptotic proteins such as Bim and Puma, thereby establishing a clear molecular link between DNA damage, Bcl-xL deamidation, and apoptosis. Surprisingly, DNA damage–triggered deamidation in primary wild-type cells is mediated not enzymatically, but by intracellular alkalinisation caused by increased expression of the NHE-1 Na⁺/H⁺ exchanger (antiport), events blocked by expression of the oncogenic tyrosine kinase (OTK). In the case of either murine or human cancer cells, enforced alkalinisation triggers Bcl-xL deamidation, crippling its ability to provide protection from the pro-apoptotic consequences of DNA damage, thereby indicating possible novel approaches to cancer therapy.

Results

DNA Damage–Induced Bcl-xL Deamidation Does Not Depend on Mitochondrial Apoptosis

An important consideration is whether DNA damage–induced Bcl-xL deamidation in murine thymocytes is a cause or consequence of thymic apoptosis. Figure 1 shows that whereas the addition of the caspase inhibitor Z-VAD-fmk, as expected, inhibited DNA damage–induced apoptosis in murine thymocytes (Figure 1A), no inhibition of DNA damage–induced Bcl-xL deamidation was observed in cell aliquots taken from the same thymic cultures (Figure 1B). It is known that in the absence of Bax and Bak, BH3-only proteins are unable to induce apoptosis [17]. We therefore used short hairpin RNA (shRNA) to deplete Bax and Bak from CD4[−]CD8⁺ (double-negative, DN) thymocytes, confirmed that depletion was sufficient to block caspase 9 cleavage (Figure S1A), and showed that DNA damage–induced Bcl-xL deamidation proceeded normally in the absence of Bax and Bak (Figure 1C). We also showed that Bcl-xL deamidation was clearly detectable within 3–6 h after the instigation of DNA damage, and proceeded in parallel with increased apoptosis (Figure S1B and S1C). These results show that Bcl-xL deamidation is not caused by mitochondrial apoptosis and are consistent with a role for deamidation upstream of the apoptotic executor pathway. Further data presented below establish a more direct causal relationship between Bcl-xL deamidation and apoptosis in DNA damaged thymocytes.

Bcl-xL Deamidation In Situ Involves Conversion of Asn⁵² to Iso-Asp⁵² and Asn⁶⁶ to Iso-Asp⁶⁶, Preventing Sequestration of Bim and Puma

We previously noted that whereas the ability of Bcl-xL to bind Bim was ablated in control thymocytes exposed to DNA damage, it was strikingly retained in pretumourigenic CD45^{−/−}lck^{F505} thymocytes, tightly correlating with the resistance to Bcl-xL deamidation noted in these cells [15]. However, work from the Weintraub laboratory suggests that deamidated Bcl-xL still binds Bim [13], thereby casting doubt on the model that Bcl-xL deamidation triggers apoptosis. Because the sequestration of BH3-only proteins by Bcl-xL is thought to explain its anti-apoptotic function [18], resolution of this question is clearly important for establishing a molecular link between DNA damage and apoptosis. We therefore carried out a series of cellular and biochemical experiments to address this key point.

Figure 2A shows that Bcl-xL measured in whole cell lysates from pretumourigenic CD45^{−/−}lck^{F505} murine thymocytes is resistant to deamidation following γ irradiation, consistent with our previous findings [15]. Immunoprecipitation of the pro-apoptotic protein Bim, followed by immunoblotting for Bcl-xL, revealed that Bim sequestered only the N52/N66 Bcl-xL and failed to bind the slower migrating deamidated protein (Figure 2A, upper panel), although the amount of Bim in each immunoprecipitate was comparable (Figure 2A, lower panel). Because the BH3-only protein Puma, not Bim,
plays a major role in DNA-damage triggered apoptosis [19,20], we also showed that both Puma and Bim are found in Bcl-xL immunoprecipitates from etoposide treated CD45−LckF505− thymocytes, whereas sequestration is ablated in wild-type cells, correlating with Bcl-xL deamidation (Figure 2B). A comparable result was obtained when Puma immuno-precipitates were blotted for Bcl-xL (Figure S2A). Therefore, deamidated Bcl-xL appears unable to sequester BH3-only proteins.

To confirm the results using intact thymocytes, we carried out in vitro biochemical experiments. Recombinant purified His-tagged Bcl-xL was exposed to alkaline conditions to cause partial deamidation and separated by anion-exchange chromatography into three peaks (Figure 2C, peaks A, B and C). Mass spectrometric analysis revealed an increase of 1 Da for peak B relative to peak A, and a further increase of 1 Da for peak C relative to peak B (Figure 2C). On SDS-PAGE gels, peak A Bcl-xL migrated slightly faster than the more acidic peaks B and C (Figure 2D), reproducing the characteristic profile of N52/N66 Bcl-xL and its deamidated versions found in our cellular studies (Figure 1B). It has already been demonstrated that these migratory shifts are not caused by phosphorylation [9,12]. In fact, deamidation of a single Asn increases protein mass by 1 Da, at the same time increasing its net negative charge, confirming that the shifts are due to deamidation. Importantly, when the three species of rBcl-xL were tested for their ability to bind to Bim in wild-type thymic lysates, only peak A bound Bim effectively, whereas binding to peak B rBcl-xL was reduced by 88% ± 2% and completely ablated using peak C rBcl-xL (Figure 2D, upper panel). Figure 2E shows that the Asp52/Asp66 version of Bcl-xL, or the Ala52/Ala66 version that cannot be deamidated, does still bind both Bim and Puma, consistent with the correction published by the Weintraub laboratory [13]. We therefore determined whether rBcl-xL Asn52 and Asn66 convert mainly to Asp or to iso-Asp upon alkali treatment. Consistent with previous results [8], Figure 2F and Figure S5 show that the ratios of iso-Asp:Asp conversion for Asn52 and Asn66 are 10:1 and 5:1, respectively. Kinetic analysis revealed that deamida-
tion of Asn66 to iso-Asp is much faster than for Asn52 (unpublished data).

Taken together, our results show that conversion of Bcl-xL Asn52 and Asn66 to iso-Asp, but not Asp, prevents sequestration of BH3-only proteins. Peak B represents rBcl-xL deamidated at either Asn52 or Asn66, whereas peak C is deamidated at both sites (Figure 2C and 2D). Deamidation to iso-Asp causes greater perturbations of protein structure than conversion to Asp [1,8], presumably explaining the loss of BH3-only protein binding.

DNA Damage–Induced Bcl-xL Deamidation and Apoptosis Is Mediated by Intracellular Alkalisation

Until now, the in vivo mechanism for the deamidation of internal protein Asn residues has not been described for any protein. Because protein Asn deamidation is accelerated by...
increased pH in vitro, we investigated intracellular pH change (pHt) as a possible regulatory mechanism in thymocytes. Figure 3A shows that after DNA damage, the pHt of live wild-type CD4+CD8- thymocytes increased to 7.55, whereas no change was observed in pretumourigenic cells. But is that increase sufficient to cause Bcl-xL deamidation? To address this question, we incubated wild-type thymocytes in the pH range of 7.2–8.0 for 20 h in the presence of the Na+-ionophore monensin to ensure complete equilibration of pHt and extracellular pH (pHe), and to neutralize acidic intracellular compartments [21], and we then assessed the extent of Bcl-xL deamidation. Figure 3B shows that whereas only 22.5% ± 3.2% was deamidated at pH 7.2, this increased to 56.1% ± 3.8% at pH 7.6 and 67.0% ± 4.5% at pH 8.0. Therefore, a rise in pHt comparable with that observed after DNA damage (Figure 3A) is sufficient to cause substantial deamidation. Furthermore, the addition of Z-VAD-fmk to thymic cultures following DNA damage did not inhibit their alkalinisation (Figure 3C), showing that the rise in pHt is not downstream of caspase activation. To investigate Bcl-xL deamidation, pHt and apoptosis in parallel, we manipulated pHt values artificially by incubating cells at varying pHt values in the absence of monensin. The left panel of Figure 3D shows that when DNA damage was induced in wild-type thymocytes, Bcl-xL deamidation could be largely prevented by artificially maintaining the pHt at 7.1 (value shown in Figure 3E, left panel), thereby reducing the percentage of apoptotic CD4+CD8- thymocytes by 2-fold relative to those incubated at physiological pH (Figure 3F, left panel). Conversely, Figure 3D (right panel) shows that the resistance to Bcl-xL deamidation observed in DNA-damaged pretumourigenic thymocytes could be completely overcome by artificially increasing the pHt to 7.55 or above (Figure 3E, right panel), correlating with a 2-fold increase in the percentage of apoptotic CD4+CD8- thymocytes relative to those incubated at physiological pH (Figure 3F, right panel). Interestingly, enforced alkalinisation alone in the absence of DNA damage caused a marked increase in Bcl-xL deamidation in the OTK expressing thymocytes (Figure 3D, right panel), with a concomitant increase in apoptosis (Figure 3F, right panel), albeit at a level lower than with DNA damage, perhaps reflecting the somewhat lower pHt values achieved under these conditions (Figure 3E, right panel).

We considered that the tight correlation between pHt, Bcl-xL deamidation, and apoptosis might nevertheless be coincidental and that enforced alkalinisation might be inducing apoptosis by a mechanism independent of Bcl-xL deamidation. Mutant Bcl-xL Ala52/Ala66 or Asp52/Asp66, both of which sequester BH3-only proteins (Figure 2E), were therefore over-expressed in wild-type CD4+CD8- thymocytes by retroviral transduction prior to enforced alkalinisation by incubation in media at pH 8.0 or 8.5. Figure 3G (middle panel) shows that, as expected, the Ala52/Ala66 mutant migrates as the lower nondeamidated version of Bcl-xL, whereas Asp52/Asp66 migrates as the more negatively charged deamidated version. Interestingly, in the cells expressing these mutant forms of Bcl-xL, the apoptosis induced by enforced alkalinisation was reduced 4-fold compared to cells transduced with empty vector, or more than 2-fold in comparison with the wild-type protein (Figure 3G, right panel), which of course undergoes deamidation in response to alkali treatment. These results show that Bcl-xL in a version able to sequester BH3-only proteins protects thymocytes from an enforced increase in pHt. Nevertheless, protection was not absolute, suggesting that Bcl-xL may not be the only mechanism protecting cells from apoptosis triggered by alkalinisation. As a further control, we have confirmed that Bcl-xL isolated from wild-type thymocytes exposed to a high pH buffer can no longer sequester Bim (Figure S2B), thereby mimicking the effects of DNA damage (Figure 2A).

Taken overall, these results demonstrate that intracellular alkalinisation following DNA damage is both necessary and sufficient for nonenzymatic Bcl-xL deamidation, that the oncogenic suppression of Bcl-xL deamidation in pretumourigenic thymocytes is caused by inhibition of alkalinisation, and that versions of Bcl-xL competent for BH3-only protein sequestration are sufficient per se to protect cells from apoptosis at alkaline pHt.

DNA Damage–Induced Alkalinisation, Bcl-xL Deamidation, and Apoptosis are Mediated by Increased NHE-1 Antiport Expression

We next investigated the molecular mechanisms leading from DNA damage to the regulation of pHt and subsequent Bcl-xL deamidation. Figure 4A shows that de novo protein synthesis is essential for Bcl-xL deamidation following DNA damage in wild-type thymocytes. Because the NHE-1 Na/H antiport is a well-established regulator of pHt [22] and has previously been implicated in the regulation of thymic apoptosis [23], we measured its expression in wild-type thymocytes after DNA damage and found that the NHE-1 level increased 2.5-fold within 5 h, whereas this increase was completely suppressed in pretumourigenic thymocytes (Figure 4B). No inhibition of increased NHE-1 expression in wild-type thymocytes was observed following addition of the Z-VAD-fmk caspase inhibitor (Figure S4A) nor following depletion of Bax and Bak from the cells (Figure S4B). We therefore carried out a further series of experiments to demonstrate that there was a direct causal linkage between the regulation of NHE-1 expression, pHt, Bcl-xL deamidation, and apoptosis. Given that the OTK blocks DNA-damage induced NHE-1 expression in pretumourigenic thymocytes, this provides a powerful system for examining the consequences of experimentally enforcing NHE-1 expression in these cells by retroviral transduction. As Figure 4C illustrates (upper panel), an enforced 2-fold–3-fold increase in NHE-1 expression in pretumourigenic thymocytes, without DNA damage, restored Bcl-xL deamidation to a level comparable to that observed in a retrovirally transduced wild-type control in five separate experiments, thereby bypassing the OTK-mediated inhibition in deamidation. Overexpression of NHE-1 increased both pHt and apoptosis to comparable levels in both pretumourigenic and wild-type thymocytes (Figure 4C, lower panels). These results suggest that increased NHE-1 expression per se is sufficient to cause increased pHt, Bcl-xL deamidation and apoptosis. To address this question further, we used the selective NHE-1 inhibitor 5-(N,N'-dimethyl)-(amidole) (DMA) to block the actions of the antiport following its increased expression on thymocytes upon DNA damage. Figure 4D shows that DNA prevented the alkalinisation of wild-type thymocytes following DNA damage (top left panel), their apoptosis (top right panel), and Bcl-xL
Bcl-xL Deamidation Regulation by Intracellular pH

A) CD4+CD8+ subset

B) C57BL/6 thymocytes

C) z-VAD FMK treatment

D) pH and Etop treatment

E) pH and Etop treatment

F) Sub-G1 fraction

G) Bcl-xL protein levels and GFP expression
Enforced intracellular alkalinisation causes Bcl-xL deamidation. Wild-type thymocytes were maintained in RPMI-1640/10% bovine fetal calf serum buffered at the indicated pH with Tris-HCl for 20 h in the presence of 20 μM monensin prior to lysis and immunoblotting for Bcl-xL. To minimize any deamidation produced during the gel-running process, the resolving gel buffer was adjusted to pH 8.0 in this experiment. The mean ratio of the lower band (native Bcl-xL) or upper band (deamidated Bcl-xL) to the total (upper plus lower bands) is shown in the graph (lower panel). The error bars represent SD (n = 3). Note that deamidation becomes prominent at pH 7.5.

Aliquots of the cells from Figure 1A incubated in the presence or absence of Z-VAD-fmk (200 μM) were analysed for pH. The histograms represent mean values ± SD (n = 3).

(A) Intracellular alkalinisation occurs following DNA damage in wild-type but not in pretumourigenic CD45−/−LckF505−/− thymocytes. Cells were treated with etoposide (Etop) for 20 h or exposed to 5 Gy of irradiation (IR) and then maintained in culture for 20 h. pH was measured using SNARF in the gated live CD4+ CD8− subset. The histograms represent mean values ± SD (n = 5).

(B) Enforced intracellular thymic alkalinisation causes Bcl-xL deamidation. Wild-type thymocytes were maintained in RPMI-1640/10% bovine fetal calf serum buffered at the indicated pH with Tris-HCl for 20 h in the presence of 20 μM monensin prior to lysis and immunoblotting for Bcl-xL. To minimize any deamidation produced during the gel-running process, the resolving gel buffer was adjusted to pH 8.0 in this experiment. The mean ratio of the lower band (native Bcl-xL) or upper band (deamidated Bcl-xL) to the total (upper plus lower bands) is shown in the graph (lower panel). The error bars represent SD (n = 3). Note that deamidation becomes prominent at pH 7.5.

(C) Aliquots of the cells from Figure 1A incubated in the presence or absence of Z-VAD-fmk (200 μM) were analysed for pH. The histograms represent mean values ± SD (n = 3).

(D) Wt or CD45−/−LckF505−/− pretumourigenic thymocytes were cultured for 24 h in media at the pH shown without monensin, with or without etoposide, and then analysed for Bcl-xL deamidation by immunoblotting. The upper and lower bands were quantified and the percentage of upper bands in total Bcl-xL calculated. The percentages shown below each lane are means ± SD (n = 5).

(E) Aliquots of cells used in (D) were assessed for pH by FACS. The histograms show the pH of live gated CD4+ CD8− thymocytes from five independent experiments ± SD. The pH values refer to the pH values of the extracellular media.

(F) Apoptosis of aliquots of the cells from (D) was analysed by FACS. The histogram shows the sub-G1 peak (%) of CD4+ CD8− thymocytes from five independent experiments ± SD. The pHe values refer to the pH values of the extracellular media.

(G) Wild-type (wt), N52A-N66A (AA), N52D-N66D (DD) Bcl-xL, and empty vector were retrovirally transduced into thymocytes. GFP-positive cells were gated live CD45+ CD8+ thymocytes from five independent experiments.

Enforced Alkalinisation Causes Increased Bcl-xL Deamidation and Apoptosis in Murine and Human Cancer Cells

The experiments illustrated in Figures 1–5 were all carried out on wild-type or primary pretumourigenic CD45−/−LckF505−/− thymocytes. Signalling pathways can be markedly different in fully transformed cells compared to their pretransformed counterparts. We therefore determined whether genotoxic damage–induced cell death following retroviral transduction was by apoptosis and not by necrosis. Figure 5C and Figure S6B illustrate that double staining for Annexin V and propidium iodide (PI) followed by FACS analysis revealed a major increase in Annexin V+ PI+ (apoptotic) cells following transduction with the negative control shRNA followed by either γ irradiation or treatment with etoposide, whereas there was no increase in apoptotic cells above baseline in the cells depleted of NHE-1: DNA damage–induced apoptosis was blocked 100%. Comparable results were obtained by measuring the sub-G1 peak by FACS (unpublished data) and NHE-1 depletion also correlated with increased survival (Figure S5B).

We considered that post-translational modification of the NHE-1 antiporter, in addition to regulation of its expression, might also be involved in mediating the DNA damage response. For example, a number of serine kinases have been shown to regulate NHE-1 phosphorylation and activity [24,25], so we investigated the pSer and pThr levels in NHE-1 immunoprecipitates from irradiated wild-type and pretumourigenic thymocytes, but the basal level of phosphorylation did not change after DNA damage and was comparable between the two cell types (Figure S6C). Nevertheless, we cannot formally exclude the possibility that not all pSer/pThr sites were recognised by the cocktail of monoclonal antibodies (mAbs) used. Taken together, our findings therefore suggest that the increased expression of the NHE-1 transporter is both necessary and sufficient for DNA damage–induced alkalinisation, Bcl-xL deamidation, and apoptosis in wild-type thymocytes, and that the suppression of these three parameters in pretumourigenic thymocytes is caused by oncogenic inhibition of the DNA damage–triggered increase in NHE-1 expression.
Bcl-xL deamidation results from a single patient are illustrated in Figure 6A, Figure S8A, and Figure S8B, respectively. Interestingly, unlike the murine tumour cells expressing an OTK, the B-CLL cells behaved somewhat more like wild-type thymocytes in that DNA damage at physiological pH caused a mean increase of pHi of 0.22 units, an 8% increase in Bcl-xL deamidation, and an 18% increase in the number of cells undergoing apoptosis (Figure 6A and Figure S8A), compared to the higher thymocyte values of 0.45 pHi units, 40% increase, and 37% increase, respectively (Figure 3). The human cancer cell values for these parameters were greatly increased at alkaline pHₐ, generating tight correlations between increasing pHₐ, Bcl-xL deamidation, and apoptosis (r values shown in Figure 6A). Thus, a mean increased pHi of 0.5 correlated with 1.7-fold and 2.4-fold increases in Bcl-xL deamidation and apoptosis, respectively. It is also striking that enforced intracellular alkalinisation alone (by 0.3 pHi units), in the absence of experimentally induced DNA damage, was itself sufficient to increase Bcl-xL deamidation and apoptosis by 1.5-fold and 1.8-fold, respectively. This point is further illustrated by the gray shaded area shown in Figure 6A, which encompasses the overlap in sub-G1
(apoptosis) values that were obtained either by DNA damage at physiological pH or by enforced alkalinisation without DNA damage. Conversely, incubation of B-CLL cells at lower pH inhibited DNA damage–induced Bcl-xL deamidation and apoptosis (Figure 6B). Therefore with respect to enforced changes in pHi, the B-CLL cells behaved in a comparable way to both murine thymocytes and tumour cells. A small increase in pHi induced by incubation in alkaline buffer in the absence of induced DNA damage generated as much, if not more, Bcl-xL deamidation and apoptosis as that triggered by genotoxic attack at physiological pHe.

NHE-1 expression in response to DNA damage was investigated in a further six B-CLL patients. Figure 6C shows by immunoblotting (right panel) that there was some variation between patients, but that in all cases (left panel), etoposide caused increased NHE-1 expression by 3 h, achieving optimal values by 6–9 h ranging from 1.9-fold–2.6-fold over basal levels. These increases correlate with the observed increases in Bcl-xL deamidation and apoptosis as that triggered by genotoxic attack at physiological pHe.

NHE-1 expression in response to DNA damage was investigated in a further six B-CLL patients. Figure 6C shows by immunoblotting (right panel) that there was some variation between patients, but that in all cases (left panel), etoposide caused increased NHE-1 expression by 3 h, achieving optimal values by 6–9 h ranging from 1.9-fold–2.6-fold over basal levels. These increases correlate with the observed increases in Bcl-xL deamidation and apoptosis in patients’ cells (Figure 6A) and at the 2.6-fold level, at least, are comparable with the increases observed in wild-type thymocytes (Figure 4B). Furthermore, DNA damage–induced Bcl-xL deamidation in B-CLL cells was prevented by addition of cycloheximide (CHX) (Figure S8C) or DMA (Figure S8D), establishing a possible linkage between DNA damage, NHE-1 function, and Bcl-xL deamidation in human cancer cells.

Discussion

It has previously been suggested that Bcl-xL deamidation is critical in the signalling pathway that leads from DNA damage to apoptosis [9]. This interpretation was based to a large degree on the observation that N52D/N66D Bcl-xL, one of the species generated by deamidation, can no longer exert anti-apoptotic activity nor sequester the pro-apoptotic protein Bim. However, a secondary mutation in the N52D/N66D Bcl-xL construct was later discovered, which, when corrected, restored binding, thereby casting doubt on the initial interpretation of the physiological significance of Bcl-xL deamidation [13]. We now propose that the initial finding was correct, but for the wrong reason. Our results indicate that the major Bcl-xL species generated by deamidation in situ is not Asp52/Asp66 but iso-Asp52/iso-Asp66, which is consistent with the well-established biochemistry of Asn deamidation [1], and that this species is unable to sequester Bim or Puma (Figure 2 and Figure S2). The introduction of iso-Asp into the disordered loop in which these residues are located is expected to cause greater conformational change than Asp, because of the redirection of the peptide backbone through β carboxyl groups, as indicated by the known structural and functional changes that occur in proteins upon conversion of Asn to iso-Asp residues [26,27]. The structural importance of protein iso-Asp residues is likewise underlined by the expression of the putative repair enzyme...
L-isoaspartate O-methyltransferase which converts iso-Asp to Asp residues: its deletion has striking effects on protein functions [28–30]. Furthermore, comparison of the crystal structures of native rat Bcl-xL with its deamidated version has revealed significant differences [10]; the structural implications of introducing iso-Asp residues into the disordered loop environment of Asn52/Asn66 merits further work.

We have identified critical elements in the signalling pathway leading from DNA damage to Bcl-xL deamidation in thymocytes and have shown, as Figure 7A illustrates, that deamidation is induced upon DNA damage by up-regulation of the NHE-1 antipor and consequent intracellular alkalinisation (Figures 3–5). To the best of our knowledge, this represents the first description of a molecular mechanism for the regulation of protein internal Asn deamidases [1]. The regulation of NHE-1 antipor function is complex,

![Figure 6. DNA Damage Induces NHE-1 Expression, and Enforced Alkalinisation Promotes Apoptosis of Human B-CLL cells](image)
In pretumourigenic thymocytes expressing an OTK, the DNA damage–induced rise in NHE-1 expression is blocked, preventing alkalinisation, Bcl-xL iso-Asp52/iso-Asp66 version in the signalling pathway from either the N52D/N66D or N52A/N66A Bcl-xL mutants, which DNA damage to apoptosis is supported by the finding that BH3-only family members as a consequence of alkalinisation, 3G). An alternative hypothesis involves the generation of new from dying upon enforced intracellular alkalinisation (Figure 7).

The striking blockade in DNA damage–induced NHE-1 expression, a mechanism that is under active investigation. We have previously demonstrated in pretumourigenic thymocytes a tight correlation between inhibition of Bcl-xL deamidation, resistance to DNA damage induced apoptosis, and oncogenesis, suggesting that the consequent accumulation of DNA-damaged thymocytes is critical in the transforming process [14,15]. It therefore seems conceivable that the OTK-induced inhibition of NHE-1 is likewise important in thymic transformation, and further in vivo work will be necessary to investigate this possibility.

The resistance to genotoxic attack by CD45-−/lck+TK+ murine tumour cells correlates, as in their pretumourigenic counterparts, with the inhibition of DNA damage–induced NHE-1 antiport expression, alkalinisation, Bcl-xL deamidation, and apoptosis (Figure S7), which is an apparent example of “oncogene addiction”, whereby oncogene expression continues to be important for survival [36]. By contrast, DNA damage of human B-CLL cells, which should not express OTKs, triggered increased NHE-1 expression and apoptosis, achieving levels comparable with wild-type thymocytes (Figure 6C). However, enforced alkalinisation of either the murine (Figure S7) or human (Figure 6) cancer cells triggered significant increases in Bcl-xL deamidation and apoptosis, even in the absence of genotoxic attack (Figure 7C). In the case of the B-CLL cells, we cannot yet exclude the possibility that the tight correlation observed between these events does not reflect causal efficacy, and further work will be necessary to elucidate this point. In any event, the key issue for cancer cell therapy in this context is not whether inhibition of Bcl-xL deamidation is involved in the initial transforming process, but whether Bcl-xL is the main prosurvival protein protecting the tumour cells from the normal consequences of DNA damage. An extensive literature suggests that Bcl-xL does indeed play this role in many tumour types [37]. For example, the down-regulation of Bcl-xL promoted the apoptosis of KARPAS-299 cells derived from a patient with anaplastic large cell lymphoma [38], and down-regulation of Bcl-xL suppresses the tumourigenic potential of the causative NPM-ALK oncogenic fusion protein in vivo [39]. Knockdown of Bcl-xL also significantly reduces the viability of pancreatic cancer cells to tumour necrosis factor α (TNF-α)– and...
TNF-α-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis by antitumour drugs [40]. Furthermore, Bcl-xL deamidation is inhibited in hepatocellular carcinomas, which are highly resistant to genotoxic treatments [11]. Our findings therefore have potential relevance to cancer therapy, where enforced alkalinisation, perhaps by amplification of NHE-1 expression, would promote Bcl-xL deamidation, thereby triggering apoptosis.

The pioneering work of Warburg [41] established that tumours display acidic extracellular pH, although more than half a century passed before it was clearly established that the intracellular pH of tumour cells is comparable with normal cells [42]. Warburg's legacy has included intermittent interest in the possibility of pH manipulation as a means to cancer therapy. Our findings not only establish that protein deamidation can be regulated by intracellular pH change in vivo, but they also suggest that strategies for pH manipulation in antineoplastic therapy should continue to receive attention, albeit for reasons different from those envisaged by Warburg.

Materials and Methods

Mice. All mice were bred and housed in specific pathogen-free conditions in the animal facility at The Babraham Institute, Cambridge, United Kingdom. The p53Δ3A-590S (PLF-GA) transgenic mice [43] and the CD45- and CD45+/CD45-591 mice have been previously described [16].

Reagents and antibodies. Etoposide, CHX, DMA, PI, monensin, nigericin, and goat-anti-rat immunoglobulin-agarose were from Sigma (St. Louis, Missouri, United States); protein A-sepharose and protein G-sepharose were from Amersham (Uppsala, Sweden); SNARF-1 was from Molecular Probes (Eugene, Oregon, United States); Z-VAD-fmk was from Santa Cruz Biotechnology. The following antibodies were used for Western Blotting: Bim (559685) from Pharmingen (San Diego, California, United States); Bcl-xL (610212) and NHE-1 (clone 54) from Transduction Lab (New Jersey, United States); Puma (ab9643) from Abcam (Cambridge, United Kingdom); Bax (06–199) and Bak (06–536) from Upstate (New York, United States); Caspase-9 (9504) from Cell Signaling (Beverly, Massachusetts, United States); phosphoserine detection kit from Calbiochem (Darmstadt, Germany); β actin and z tubulin from Sigma.

Recombinant Bcl-xL analysis. Image clone (2823873) containing the sequence for human Bcl-xL was obtained from the MRC gene service (United Kingdom). The DNA coding amino acids 1–196 (of 233) was amplified by PCR and cloned into pENTR/D-TOPO (Invitrogen, Carlsbad, California, United States). The DNA was sequenced and the insert subcloned into pDEST17 (coding for a hexa-histidine tag) and transformed into E. coli strain expression host DE3 (Novagen, Madison, Wisconsin, United States). Recombinant Bcl-xL (His-N terminal tagged) was expressed in E. coli and purified using Co2+-chelation beads so that rapid elution could be performed at pH 7.0 to prevent deamidation. After anion exchange purification, three peaks (A, B, and C) were collected. Aliquots (1 μl) of each peak were desalted for mass spectrometric analysis by solid-phase microextraction on C4 (Applied Biosystems). For nickel precipitation, each Bcl-xL species eluted with 0.1% formic acid/50% aqueous acetonitrile (1 μl). The nanospray tip was inserted into a nanoelectrospray ion source (Protana Engineering) attached to a quadropole time-of-flight (TOF) mass spectrometer (Qstar Pulsar i, Applied Biosystems-MDS Sciex, Foster City, California, United States) and analysed by flow cytometry, gating on the CD4+ CD8+ lymphocyte population. The mass spectrometer data were averaged and deconvoluted using the Bayesian Protein Reconstruct function in BioAnalyst software (Applied Biosystems). For nickel precipitation, each Bcl-xL species was added to C57BL/6 lymphocyte lysates for 2 h at pH 7.2, and Ni2+ beads were used to precipitate the Bcl-xL and complexed Bm.

Mass spectrometric analysis of Bcl-xL peptide digestion. Bcl-xL, ammonium acetate pH 5.3 for 30 min at a flow rate of 250 nlm. During the development phase of the methodology, the mass spectrometer was operated in MSMS mode to conclusively identify the peptide digestion products and to confirm the sites of deamidation as N52 and N66. Once the identities of the peptides had been established, the mass spectrometer was operated in MS mode for further analyses.

For relative quantification of specific peptides, peak areas were obtained from extracted ion chromatograms of the monoisotopic mass of the corresponding pseudomolecular ions. These were: 816.60 ([M+H]+ peptide 1), 816.85 ([M+H]+ peptide 2), 574.28 ([M+3H]+ peptide 2), and 574.61 ([M+3H]+ peptide 2 deamidated). The chromatographic conditions used for the separation of the peptides in the LC-MS analyses were optimised so as to resolve the Asn, Asp, and iso-Asp forms of peptides 1 and 2. The Asp and iso-Asp forms of the two peptides were identified by spiking an aliquot of a digestion mixture with Asp- or iso-Asp-containing synthetic peptides prior to LC-MS.

DNA damage treatments. Freshly isolated thymocytes were irradiated with 10 Gy using a caesium source or treated with etoposide in DMSO at a concentration of 25 μM for murine cells, or 50 μM for R-CLL cells, for the times indicated. Carrier DMSO was added to control cells.

Immunoblotting and immunoprecipitation. Cells were lysed in 50 mM HEPES (pH 7.2), 130 mM NaCl, 1mM EDTA, 0.2% NP-40, and complete protease inhibitors. Western lysates were prepared by standard Laemmli’s SDS-PAGE (pH 8.8) unless otherwise stated. For immunoblotting: rat Bim antibody (Oncogene, San Diego, California, United States) was coated to anti-rabbit immunoglobulin-agarose; rabbit Puma antibody was coated to protein A-sepharose; mouse NHE-1 antibody was coated to protein G-sepharose; rabbit Bcl-xL antibody was coated to goat-anti-rabbit immunoglobulin-agarose. Lysates were precleared with the appropriate agarose. Quantification of immunoblots was carried out using a phosphorimager (Fuji FLA3000, http://www.fujifilm.com).

Intracellular pH measurement. Intracellular pH was measured using a standard ratiometric method with a pH-sensitive fluorophore SNARF-1 by flow cytometry [44]. Briefly, cells in phosphate-buffered saline (PBS) were loaded with 10 μM SNARF-1 for 40 min at 37°C, followed by washing and incubation in PBS at room temperature for 30 min prior to measurement of pH. pH calibration was carried out using a pH 7.4 and pH 8.4 buffer with 10 μM nigericin, irradiated with 10 Gy using a caesium source or treated with etoposide in DMSO at a concentration of 25 μM for murine cells, or 50 μM for R-CLL cells, for the times indicated. Carrier DMSO was added to control cells.

Measurement of apoptosis. Cells were stained with 20 μg/ml PI (with 50 μg/ml RNase A) and analysed by flow cytometry, gating on the CD4+ CD8+ lymphocyte population. The sub-G1 peak was quantified as a measure of apoptosis. In addition, apoptosis was measured using the Annexin-V-Fluos Staining Kit (Roche) according to the protocol provided. To measure the percentage of dead cells, PI was used at 0.5 μg/ml.

Generation of Bcl-xL mutants. Mouse Bcl-xL cDNA was kindly provided by S. Korosmeyer (Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States). N52A-N66A and N52D-N66D mutants were made using the Quick-Change Site-Directed Mutagenesis Kit from Stratagene (La Jolla, California, United States) according to the instructions provided. The sequences of the constructs were confirmed by DNA sequencing.

Retroviral gene knockdown and overexpression. Murine CD4+ T cells were transduced with retroviral vectors using the Genesis-X-Cell 3000 Retroviral Cell Line Transduction Kit from Clontech. The retroviral vectors were constructed by transfecting the following plasmids into 293T cells: pMUT Southern Blotting for Southern blotting. Flow cytometry was performed on murine splenocytes, immortalised murine splenic T cells [45], and B cells [46]. The flow cytometric results were confirmed by DNA sequencing.
tool” from the company’s website. Five selected sequences were cloned into pSuppressorRetro. The sequence of NHE-1 shRNA2 is 5'-GAAACAAAGGCGGTCTTACAC-3'. Retroviral production and infection were performed according to the protocol provided. For overexpression, NHE-1 or Bcl-xL (wild-type, N252A/N66A, and N252D/N66D) DNA plasmids were amplified with AccuPrime Pfu DNA polymerase (Invitrogen), and cloned into Xhol and EcoRI sites of the multiple cloning sites of the MigRI vector [45] upstream of an internal entry site followed by enhanced green fluorescent protein (EGFP). The sequences of the inserts were verified by DNA sequencing. The plasmids were transfected into 293T cells using Lipofectamine (Invitrogen). Viral infection of CD45-CD19-FITC, and B220-PE and was analysed by flow cytometry.

Figure S2. Deamidation Disrupts the Sequestration of BH3-Only Proteins by Bcl-xL

(A) Puma binds to the native but not deamidated form of Bcl-xL. Either wild-type (1.5 × 10⁶, lanes 3 and 4) or pre-tumourigenic (CD45⁺/Lck⁺) thymocytes (1.5 × 10⁶, lanes 5 and 6) were treated as in Figure 2A, and cells were lysed and subjected to immunoprecipitation with Puma antibody, followed by blotting with either Bcl-xL, or Puma antibodies. Lane 1 is a wild-type thymocyte whole cell lysates (WCL) control to facilitate comparison of native and deamidated forms of Bcl-xL. Lane 2 represents the light chain of the Puma antibody used for immunoprecipitation.

(B) Deamidated Bcl-xL from alkali treated thymocytes no longer binds to Bim. Wild-type thymocytes were incubated in neutral (pH 7.0) or alkaline (pH 9.0) buffer at 37 °C for 24 h. Bim was immunoprecipitated from WCLs and WCL samples. Bim immunoprecipitates and Bim-depleted lysates were then separated and immunoblotted for either Bcl-xL, or Bim.

Figure S3. The Asp and iso-Asp Forms of Bcl-xL Chymotryptic Peptides 1 and 2 Were Identified by Spiking an Aliquot of a Digestion Mixture with Asp- or iso-Asp–Containing Synthetic Peptides Before LC-MS

Peptides SDVEENRTEAPEGTESEMETPSAINGNPSW (peptide 1) and LC-MS Mixture with Asp- or iso-Asp–Containing Synthetic Peptides Before LC-MS analyses at time point 72 h of the rBcl-xL base treatment. The chromatograms show LC-MS analyses at time point 72 h of the rBcl-xL base treatment. Found at doi:10.1371/journal.pbio.0050001.sg003 (1.1 MB TIF).

Supporting information

Figure S1. DNA Damage–Induced Bcl-xL Deamidation Correlates with the Kinetics of Thymic Apoptosis

(A) The membrane from Figure 1C was stripped and reprobed with casein-3 antibody. Cleavage of casein-3 following DNA damage was induced by XhoBcl-xL knock-down experiments. (B) Wild-type thymocytes were cultured in RPMI-1040/10% bovine fetal calf serum with 25 µM etoposide for the times shown, and aliquots of cells from each time point were stained with 7-AAD and analysed by flow cytometry to estimate the percentage of cells undergoing apoptosis (sub-G1 peak expressed as a % of total cells). The data represent a representative experiment and the mean values ± SD from five independent experiments are quantified in (B) (blue bars).

(C) Aliquots of cells from the experiments shown in (A) were analysed for Bcl-xL expression by immunoblotting, and the membrane was reprobed with tubulin (loading control). The upper bands (deamidated) and lower bands (native) of Bcl-xL were quantified using a FACsAria.

Figure S4. DNA Damage–Induced NHE-1 Up-Regulation Is Mitochondrial Apoptosis–Independent

(A) Aliquots of the cells from Figure 1A incubated in the presence or absence of Z-VAD-fmk (200 µM) were analysed for the expression of NHE-1 and tubulin (as loading control) by immunoblotting. (B) Aliquots of the cells from Figure 1C were analysed for the expression of NHE-1 by immunoblotting. Tubulin was reprobed as a loading control. Found at doi:10.1371/journal.pbio.0050001.sg004 (645 KB TIF).

Figure S5. Thymocytes Treated with DNA or Transduced with NHE-1 RNA Display a Survival Advantage In Vitro Following DNA Damage

(A) Purified double-negative (DN) thymocytes treated with/without DNA, etoposide, or irradiation were cultured in vitro. At 24 h, 48 h, or 72 h, an aliquot of cells was analysed by PI staining (0.5 µg/ml) using flow cytometry; PI-positive cells represent dead cells. (B) Purified DN thymocytes transduced with NHE-1 shRNA2 or empty vector were treated with or without etoposide and irradiation and then cultured in vitro. At 24 h, 48 h, or 72 h, an aliquot of cells was analysed as in (A). Found at doi:10.1371/journal.pbio.0050001.sg005 (431 KB TIF).

Figure S6. Supplementary Information for NHE-1 Knockdown and Phosphorylation Analysis

(A) Knockdown of NHE-1 by shRNA. NHE-1 shRNA (shRNA1–5), negative control, and empty vector were transduced into wild-type thymocytes. Immunoblotting for NHE-1 and tubulin showed that shRNA2 is the most potent shRNA2 inhibiting NHE-1 expression; soshRNA2 was used in subsequent experiments. (B) The histograms summarise the percentage of apoptotic cells (Annexin V+/−) and dead cells (Annexin V+/−) from the experiment illustrated in Figure 5C. The data are means based on five independent experiments.

Figure S7. Primary Tumour Cells Are Resistant to DNA Damage–Induced Bcl-xL Deamidation and Apoptosis, but Enforced Alkalisation Overcomes this Resistance

(A) DNA damage–induced Bcl-xL deamidation is inhibited in CD45⁺/Lck⁺ tumour cells. Wild-type, CD45⁺/Lck⁺ pre-tumourigenic, and CD45⁺/Lck⁺ tumour cells were either treated with etoposide for 24 h or exposed to 5 Gy of irradiation and then cultured for 24 h. Cells were lysed and subjected to immunoblotting for Bcl-xL or tubulin (loading control).

(B) Intracellular alkalisation and apoptosis induced by DNA

PLOS Biology | www.plosbiology.org January 2007 | Volume 5 | Issue 1 | E1
damage are both inhibited in CD45^+/Lck/F505^ tumour cells. pH_1 (upper panel) and apoptosis (lower panel) were analysed as in Figure 3A and Figure 1A.

(C) DNA damage causes up-regulation of NHE-1 in wild-type but not in CD45^-/Lck/F505^ tumour cells. Wild-type thymocytes or CD45^-/Lck/F505^ tumour cells were either treated with etoposide (Etop) for 5 h or exposed to 5 Gy of irradiation and then maintained in culture for 5 h, followed by immunoblotting for NHE-1 or tubulin. The histogram shows the quantification of NHE-1 expression from five independent experiments SD. Lane 3 was defined as 1(^t). (D) CD45^-/Lck/F505^ tumour cells were cultured in the media with the pH_1 as shown without monensin, treated with irradiation or etoposide, and analysed for Bcl-xL deamidation by immunoblotting. The percentage deamidation was calculated as in Figure 1B. (E) Aliquots of the cells used for (D) were assessed for pH_1. (F) Aliquots of the cells used for (D) were assessed for apoptosis. The histograms represent mean values ± SD (n = 3).

(A) shows that Bcl-xL deamidation following DNA damage was suppressed in primary tumour cells to the same extent as in pretumourigenic thymocytes 24 h after inducing DNA damage, although after 48 h, the inhibition of deamidation was somewhat less (68.1% ± 2.9% inhibition in tumour cells compared to 96.2% ± 3.8% in pretumourigenic thymocytes, unpublished data). Likewise, alkalisation (B, upper panel), apoptosis (B, lower panel) and increased NHE-1 expression (C) were all suppressed in tumour cells to near normal extent as in an in vitro tumourigenic thymocytes. Furthermore, in the absence of monensin, extracellular buffers at pH 8.0–8.5 forced pH_1 values of 7.5–7.7 (E) triggering Bcl-xL deamidation (D) and apoptosis (F). It is particularly striking that incubation in buffer at pH 8.0, for example, which achieves a pH_1 value of 7.43, triggers 66.4% and 36.6% levels of Bcl-xL deamidation and apoptosis, respectively, irrespective of whether, in addition, DNA damage was induced by etoposide or by γ irradiation. These results show that murine tumour cells resistant to genotoxic insult at physiological pH_1 values can be sensitised to die by enforced alkalisation leading to Bcl-xL deamidation.

References

8. Accession Numbers

The GenBank (http://www.ncbi.nlm.nih.gov/Genbank) accession numbers for proteins discussed in this paper are: Bcl-xL (BC019307), Bim (NM009754), NHE-1 (BC052708), and Puma (U82987).

Acknowledgments

We are grateful to the late Professor S. Korsmeyer for the provision of a reagent, to Cindy Webb for animal husbandry, to Geoff Morgan for help with the FACS facility, to Anne Segonds-Pichon for advice in statistical analysis, and to Klaus Okkenhaug for suggestions on the manuscript.

Author contributions. RZ and DRA conceived and designed the experiments. RZ, DO, and TSS performed the experiments. RZ, DO, and TSS analyzed the data. GAF and ARG contributed reagents/materials/analytical tools. DRA wrote the paper.

Funding. Financial support was provided by the Biotechnology and Biological Sciences Research Council and Association for International Cancer Research.

Competing interests. The authors have declared that no competing interests exist.

Values SD (n = 10) for Bcl-xL deamidation (right panel) and apoptosis (left panel) obtained at each of the three extracellular pH values investigated. The numbers at the top of each bar represent the mean pH_1 values measured in the cells incubated at the pH_1 values shown. (B) A representative Bcl-xL. Western blot from the B-CLL samples analysed in Figure 6A is shown. (C) B-CLL patients' PBMCs were treated with/without CHX, etoposide, and irradiation as in Figure 4A. 48 h later cells were subjected to immunoblotting for Bcl-xL. A representative blot from four independent experiments is shown. Tubulin was re-probed as loading control.

(D) B-CLL patients' PBMCs were treated with/without DNA, etoposide, and irradiation as in Figure 4D. 48 h later cells were subjected to immunoblotting for Bcl-xL. A representative blot from four independent experiments is shown. Tubulin was re-probed as loading control.

Found at doi:10.1371/journal.pbio.0050001.sg007 (1.3 MB TIF).

Figure S8. Inhibition of NHE-1 Synthesis by CHX or Inhibition of NHE-1 Function by DMA in B-CLL Cells Blocks DNA Damage–Induced Bcl-xL Deamidation

(A) Replotting of data from Figure 6A to show the absolute mean
Supplementary Figure 1

A

<table>
<thead>
<tr>
<th>IR</th>
<th>Etop</th>
<th>Negative ctrl</th>
<th>shRNA: Bax, Bak</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Etop</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25kDa</td>
</tr>
<tr>
<td>3</td>
<td>25kDa</td>
</tr>
<tr>
<td>6</td>
<td>50kDa</td>
</tr>
<tr>
<td>9</td>
<td>50kDa</td>
</tr>
<tr>
<td>16</td>
<td>50kDa</td>
</tr>
<tr>
<td>24</td>
<td>50kDa</td>
</tr>
</tbody>
</table>

B

Cell Number

7-AAD

Caspase 9

Cleaved Caspase 9

Deamidated species
Native Asn-Asn

Bcl-xL

25kDa

50kDa

percentage

sub-G1

deamidated (% of total)
Supplementary Figure 2

A

WCL ctrl blank C57Bl/6 CD45−/−LckF50

Supplementary Figure 2

B

pH 7 9 7 9 7 9

WB

Bcl-xL

Puma
Supplementary Figure 3

Digest alone
Digest spiked with Asp peptide
Digest spiked with isoAsp peptide

N52 (peptide 1)
Peak1:N
Peak2:D
Peak3:iso-D

N66 (peptide 2)
Peak1:N
Peak2:D
Peak3:unknown
Peak4:iso-D

Digest spiked with isoAsp peptide
Digest spiked with Asp peptide
Digest alone
Supplementary Figure 4

A

<table>
<thead>
<tr>
<th>Treatment</th>
<th>z-VAD</th>
<th>Etop</th>
<th>-</th>
<th>+</th>
<th>-</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR</td>
<td></td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Etop</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

![Image of Western Blot](image-url)

B

<table>
<thead>
<tr>
<th>Condition</th>
<th>Negative ctrl</th>
<th>shRNA: Bax, Bak</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Etop</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

![Image of Western Blot](image-url)
Supplementary Figure 5

A

B

Pt positive percentage

0 24h 48h 72h

0 24h 48h 72h
Supplementary Figure 6

A

<table>
<thead>
<tr>
<th>shRNA 1</th>
<th>shRNA 2</th>
<th>shRNA 3</th>
<th>shRNA 4</th>
<th>shRNA 5</th>
<th>Negative ctrl</th>
</tr>
</thead>
</table>

75kDa NHE-1
50kDa tubulin

B

AnnexinV(+) PI(-)
AnnexinV(+) PI(+)

untreated
Etop
IR

NHE-1

C

<table>
<thead>
<tr>
<th>C57BL/6</th>
<th>CD45−/LckF505</th>
</tr>
</thead>
<tbody>
<tr>
<td>time after IR (min)</td>
<td>0 30 60 120</td>
</tr>
</tbody>
</table>

75kDa p-Ser

NHE-1

Arbitrary unit

*
A

CD45\(^{-/-}\) \& Lck\(^{F505}\) tumor

IR: - + - + - + +
Etop: - - + + - + +

Bcl-x\(_L\)

B

C

Supplementary Figure 7

D

CD45\(^{-/-}\) \& Lck\(^{F505}\) tumor

pHe

IR: - - - - - + + +
Etop: - - + + + - -

Deamidated (% total)

E

F
Supplementary Figure 8

A

B-CLL #12

<table>
<thead>
<tr>
<th>pH_e</th>
<th>IR</th>
<th>Etop</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8.0</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>8.5</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bcl-x_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>25kDa</td>
</tr>
<tr>
<td>tubulin</td>
</tr>
<tr>
<td>50kDa</td>
</tr>
</tbody>
</table>

B

B-CLL #12

<table>
<thead>
<tr>
<th>50kDa</th>
</tr>
</thead>
<tbody>
<tr>
<td>tubulin</td>
</tr>
</tbody>
</table>

C

B-CLL #23

<table>
<thead>
<tr>
<th>IR</th>
<th>Etop</th>
<th>CHX</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bcl-x_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>25kDa</td>
</tr>
<tr>
<td>tubulin</td>
</tr>
<tr>
<td>50kDa</td>
</tr>
</tbody>
</table>

D

B-CLL #24

<table>
<thead>
<tr>
<th>IR</th>
<th>Etop</th>
<th>DMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bcl-x_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>25kDa</td>
</tr>
<tr>
<td>tubulin</td>
</tr>
<tr>
<td>50kDa</td>
</tr>
</tbody>
</table>
Inhibition of the Bcl-x_L Deamidation Pathway in Myeloproliferative Disorders

BACKGROUND

The myeloproliferative disorders are clonal disorders with frequent somatic gain-of-function alterations affecting tyrosine kinases. In these diseases, there is an increase in DNA damage and a risk of progression to acute leukemia. The molecular mechanisms in myeloproliferative disorders that prevent apoptosis induced by damaged DNA are obscure.

METHODS

We searched for abnormalities of the proapoptotic Bcl-x_L deamidation pathway in primary cells from patients with chronic myeloid leukemia (CML) or polycythemia vera, myeloproliferative disorders associated with the BCR-ABL fusion kinase and the Janus tyrosine kinase 2 (JAK2) V617F mutation, respectively.

RESULTS

The Bcl-x_L deamidation pathway was inhibited in myeloid cells, but not T cells, in patients with CML or polycythemia vera. DNA damage did not increase levels of the amiloride-sensitive sodium–hydrogen exchanger isoform 1 (NHE-1), intracellular pH, Bcl-x_L deamidation, and apoptosis. Inhibition of the pathway was reversed by enforced alkalinization or overexpression of NHE-1, leading to a restoration of apoptosis. In patients with CML, the pathway was blocked in CD34+ progenitor cells and mature myeloid cells. Imatinib or JAK2 inhibitors reversed inhibition of the pathway in cells from patients with CML and polycythemia vera, respectively, but not in cells from a patient with resistance to imatinib because of a mutation in the BCR-ABL kinase domain.

CONCLUSIONS

BCR-ABL and mutant JAK2 inhibit the Bcl-x_L deamidation pathway and the apoptotic response to DNA damage in primary cells from patients with CML or polycythemia vera.
CHRONIC MYELOID LEUKEMIA (CML) AND polycythemia vera are clonal myeloproliferative disorders that are associated with the activation of distinct tyrosine kinases, the BCR-ABL fusion kinase and the Janus tyrosine kinase 2 (JAK2) mutation, respectively. In both disorders, patients usually present with chronic disease, which is readily controlled. However, for reasons that are unclear, both diseases carry a risk of progression to a blastic phase resembling acute leukemia that resists further therapy. The cellular prosurvival protein Bcl-x, is up-regulated in patients with CML and polycythemia vera and is thought to inhibit apoptosis. Moreover, BCR-ABL protein expression is associated with a reduced apoptotic response to genotoxic drugs, and quiescent CML stem cells, thought to be responsible for residual disease, are resistant to the apoptosis that tyrosine kinase inhibitors induce.

A pathway regulating the function of Bcl-x, has been described in several studies. In normal mouse thymocytes, DNA damage increases the activity of the amiloride-sensitive sodium–hydrogen exchanger isofrom 1 (NHE-1), thus raising the intracellular pH, which in turn causes nonenzymatic deamidation of Bcl-x,. In this context, the importance of deamidation (the removal of an amide functional group from an organic compound) is due to its conversion of the amino acid asparagine into isoaspartic acid. Such an alteration reduces the ability of the antiapoptotic Bcl-x, protein to sequester and inhibit the Bcl-2 homology 3 (BH3)–only family of proapoptotic proteins, thereby promoting apoptosis. A link with tumorigenesis was suggested by the observation that the normal response of the NHE-1–Bcl-x, pathway to DNA damage was abolished in a mouse model of T-cell lymphoma.

Thymocytes that were transformed by an activated Lck tyrosine kinase were unable to respond to DNA damage by increasing NHE-1 levels, Bcl-x, deamidation, or apoptosis. Inhibition of the NHE-1–Bcl-x, pathway does not appear to be a general feature of cancer, since Bcl-x, deamidation that is induced by damaged DNA is intact in cell lines of osteosarcoma and cervical, bladder, and ovarian cancers and in primary chronic lymphocytic leukemia cells. Because the relevance of Bcl-x, deamidation for human cancers associated with activated tyrosine kinases remains unclear, we examined the Bcl-x, deamidation pathway in cells from patients with CML and polycythemia vera.

METHODS

REAGENTS AND ANTIBODIES
We obtained etoposide, propidium iodide, and nigericin from Sigma; SNARF-1 from Molecular Probes; imatinib from Novartis; JAK inhibitor 1 from Calbiochem; and JAK2 inhibitors TG101209 and AT9283 from Astex Therapeutics. For Western blot analysis, we used antibodies Bcl-x, (610212) and NHE-1 (clone 54) from BD Transduction Laboratories and β-actin and α-tubulin from Sigma. For flow cytometry, we used antibodies CD2-FITC (product code, CD0201), CD3-FITC (product code, MHCD0301), CD19-FITC (product code, MHCD1901), CD13-PE (product code, MHCD1304), and CD14-APC (product code, MHCD1405) (Caltag).

PATIENTS
We collected peripheral-blood samples from patients with either CML or polycythemia vera and from healthy control subjects. All subjects provided written informed consent. The study was approved by the Cambridge and Eastern Region ethics committee. Of the 10 CML samples for which data are presented in Figure 1, 6 were from patients with newly diagnosed chronic-phase CML, 1 was from a patient in the accelerated phase, and 3 were from patients in the chronic phase who were receiving therapy. All patients with polycythemia vera whose data are presented in Figure 2 had stable, nontransformed disease and were receiving hydroxycarbamide therapy at the time of blood sampling. The six patients with CML whose data are presented in Figure 3 had newly diagnosed chronic-phase CML, and the patient with the imatinib resistance mutation (E255V) in Figure 4 was in the accelerated phase. All patients with CML had the BCR-ABL rearrangement; patients with polycythemia vera and idiopathic myelofibrosis had received a diagnosis on the basis of criteria that have been reported previously. The quantitative pyrosequencing assay for the JAK2 V617F mutation was performed as described previously.

CELL PURIFICATION
Peripheral-blood samples from the patients and control subjects were centrifuged through Lympho-prep (Axis-Shield PoC), and the cells in the pellets (granulocytes) or the interphase (peripheral-blood mononuclear cells [PBMCs]) were then harvested for subsequent experiments. The myeloid origin
of PBMCs and the purity of the granulocyte populations were checked by staining with CD2, CD3, and CD19 monoclonal antibodies, conjugated with fluorescein isothiocyanate, together with CD13-PE and CD14-APC, followed by flow cytometry. Of the PBMCs, 85 to 95% were of myeloid origin, and the granulocytes were more than 90% pure. (Representative flow cytometric data of cell preparations are shown in Fig. 1 in the Supplementary Appendix, available with the full text of this article at www.nejm.org.) Mobilized peripheral-blood samples from control subjects and samples of CML peripheral blood were used to purify CD34+ cells, first using a MACS CD34 MicroBead Kit (Miltenyi Biotec), followed by cell sorting to obtain 95% pure CD34+ cells maintained in RPMI medium with 10% fetal-calf serum.

CELL LINES

We used human hematopoietic cancer-cell lines K562, HEL, Daudi, DU528, Jum2, Karpas299, OPM2, and DOHH2 (for details, see Table 1 in the Supplementary Appendix). Cells were cultured in RPMI medium with 10% fetal-calf serum. Murine BaF3 cells expressing the thrombopoietin receptor (BaF3–TpoR) were cultured in RPMI medium with 1 ng per milliliter of recombinant interleukin-3.
Figure 1 (facing page). Inhibition of the NHE-1–Bcl-x_L Deamidation Pathway Induced by DNA Damage in CML Cells.

In Panel A, NHE-1 up-regulation and Bcl-x_L deamidation induced by DNA damage are inhibited in cells from patients with CML in representative blots. Purified granulocytes (from 6 control subjects and 10 patients with CML) that were cultured in RPMI medium were either treated with etoposide (Etop) for 24 hours or exposed to 5 Gy of irradiation (IR) and then cultured for 24 hours. Cells were lysed and subjected to immunoblotting for NHE-1 and Bcl-x_L. Tubulin was reprobed as a loading control. Representative blots from a control subject and a patient with CML are shown. Since these are two different blots, densities cannot be compared between blots. NHE-1 relative intensities that were normalized for protein loading are shown below the immunoblots, with the relative intensity for untreated control samples set at a value of 1.0. In the Bcl-x_L analysis, the upper bands (deamidated) and lower bands (native) were quantified and the deamidated species expressed as a percentage of total Bcl-x_L, as shown. In Panel B, intracellular alkalinization induced by DNA damage is inhibited in CML cells, as compared with cells from control subjects. Intracellular pH was measured in aliquots of the same cells used in the analysis shown in Panel A. The mean (±SD) values from 6 control subjects and 10 patients with CML are shown. Single asterisks indicate P<0.05, and double asterisks P<0.001. In Panel C, DNA damage–induced apoptosis is inhibited in CML cells. Apoptosis was measured in aliquots of the same cells used in the analysis shown in Panel A by DNA staining in the sub-G1 region with the use of flow cytometry. The mean (±SD) values from 6 control subjects and 10 patients with CML are shown. Single asterisks indicate P<0.05, and double asterisks indicate P<0.001. In Panel D, overexpression of NHE-1 antiprot causes Bcl-x_L deamidation in CML cells. Peripheral-blood mononuclear cells (PBMCs) from patients with CML were either untreated or were transfected with empty vector or with plasmid NHE-1–internal ribosome entry site–enhanced green fluorescent protein (NHE-1 vector) with the use of a Nucleofector kit (Amaxa Biosystems).¹ Green fluorescent protein–positive cells were then sorted and subjected to immunoblotting for NHE-1 or Bcl-x_L. Tubulin was reprobed as a loading control. Densitometric values that were normalized for protein loading are shown under the immunoblots. In Panel E, overexpression of NHE-1 causes intracellular alkalinization in CML cells. Intracellular pH was measured in aliquots of the same cells used in the analysis shown in Panel D. The graph represents mean (±SD) values for three patients with CML. Double asterisks indicate P<0.001. In Panel F, overexpression of NHE-1 causes apoptosis in CML cells. Apoptosis of cells in the sub-G1 phase was measured in aliquots of the same cells used in the analysis shown in Panel D. The graph represents mean (±SD) values. Double asterisks indicate P<0.001.

DNA DAMAGE TREATMENTS

Cells were irradiated with 5 Gy with the use of a cesium source or treated with 50 μM of etoposide in dimethyl sulfoxide (DMSO) for the times indicated. Carrier DMSO was added to control cells.

IMMUNOBLOTTING AND MEASURES OF pH AND APOPTOSIS

These analyses were performed as described previously.¹⁴ Intracellular pH was measured with the use of a pH-sensitive dye in conjunction with flow cytometry.

TRANSFECTION AND RETROVIRAL TRANSDUCTION

Peripheral-blood mononuclear cells from patients with CML were transfected with plasmid NHE-1–internal ribosome entry site–enhanced green fluorescent protein (pNHE-1–IRES–EGFP) with the use of a Nucleofector kit (K562) (Amaxa Biosystems). GFP-positive cells were sorted by flow cytometry with the use of a FACSaria flow cytometer (BD Biosciences). Murine stem-cell virus–IRES–GFP–based retroviral vectors MIG-BCR-ABL, MIG-Jak^{2v617f}, and MIG-NPM-ALK were transected into the Phoenix cell line with the use of Lipofectamine (Invitrogen), and culture supernatants were harvested 24 hours later. Viral infection of Baf3–TpoR cells was performed by spinoculation (1200 g for 90 minutes at 30°C). GFP-positive cells were cultured in RPMI medium with 10% fetal-calf serum and sorted 2 days later by flow cytometry with the use of a FACSaria flow cytometer.

STATISTICAL ANALYSIS

We performed all statistical analyses using Student’s t-test. All P values are two-sided. A P value of less than 0.05 was considered to indicate statistical significance.

RESULTS

DNA DAMAGE

To assess the activity of the NHE–1–Bcl-x_L pathway in normal myeloid cells, we studied the effect of DNA damage on purified peripheral-blood granulocytes from healthy control subjects. Both etoposide and irradiation increased levels of NHE-1, intracellular pH, deamidation of Bcl-x_L, and the percentage of apoptotic cells, findings that were consistent with results in mouse thymocytes that were reported previously.¹⁴ However, no
reproducible changes in basal NHE-1 levels were apparent (Fig. 1A, and Fig. 2 in the Supplementary Appendix). In marked contrast, we did not see such responses to DNA damage in granulocytes from patients with CML carrying the BCR-ABL tyrosine kinase (Fig. 1A and 1B). Both etoposide and irradiation caused significantly less apoptosis in CML granulocytes than in normal granulocytes (Fig. 1C), which was consistent with the genotoxic resistance for BCR-ABL–positive cells reported previously. In contrast, T lymphocytes from the same patients with CML did not resist alkalinization.

Figure 2. Inhibition of the NHE-1–Bcl-xL Deamidation Pathway in Polycythemia Vera Cells Induced by DNA Damage.

In Panel A, NHE-1 up-regulation induced by DNA damage is inhibited in polycythemia vera (PV) cells. Purified granulocytes (from three control subjects and eight patients with polycythemia vera) that were cultured in RPMI with 10% fetal-calf serum were treated with etoposide (Etop) for 3, 6, or 9 hours, as shown. Cells were lysed and subjected to immunoblotting for NHE-1 or tubulin. A representative blot is shown. NHE-1 relative intensities that were normalized for protein loading are shown below the immunoblots with untreated controls set at a value of 1.0. In Panel B, DNA damage–induced intracellular alkalinization is inhibited in polycythemia vera cells. Purified granulocytes that were cultured in RPMI with 10% fetal-calf serum were either treated with etoposide for 24 hours or exposed to 5 Gy of irradiation (IR) and then cultured for 24 hours. Intracellular pH was measured by flow cytometry. The mean (±SD) values of intracellular pH from three control subjects and eight patients with polycythemia vera are shown. Single asterisks indicate P>0.05, and double asterisks P<0.001. In Panel C, DNA damage–induced Bcl-xL deamidation is inhibited in polycythemia vera cells. Purified granulocytes from control subjects and patients with polycythemia vera were treated and analyzed, as described in Figure 1A. Representative blots from control subjects and patients with polycythemia vera are shown. In Panel D, DNA damage–induced apoptosis is inhibited in polycythemia vera cells. Apoptosis in purified granulocytes from control subjects and patients with polycythemia vera was analyzed, as described in Figure 1C. The single asterisk indicates P>0.05, and double asterisks indicate P<0.001.
Bcl-x_d deamidation, and apoptosis induced by damaged DNA (Fig. 3 in the Supplementary Appendix).

To investigate the level at which the NHE-1–Bcl-x_d deamidation pathway was blocked in CML cells, we exposed granulocytes from patients with CML to varying levels of external pH. Enforced alkalinization reversed the inhibition and restored Bcl-x_d deamidation and apoptosis even in the absence of DNA damage, suggesting that the block was at the level of the NHE-1 antiport (Fig. 4 in the Supplementary Appendix). Consistent with this interpretation, transfection of NHE-1 complementary DNA (cDNA) into CML cells resulted in an increase in NHE-1 levels by a factor of 2 to 3 and was accompanied by increased intracellular pH, Bcl-x_d deamidation, and apoptosis (Fig. 1D to 1F).

We next studied patients with polycythemia vera, a disease that is associated with a gain-of-function point mutation in the cytoplasmic tyrosine kinase JAK2. Since peripheral-blood granulocytes and bone marrow progenitors from many patients with polycythemia vera contain a mixture of normal and mutant cells, we selected patients in whom JAK2 pyrosequencing demonstrated that the majority of peripheral-blood granulocytes carried the JAK2 mutation (Fig. 5 in the Supplementary Appendix). In contrast to granulocytes from control subjects, those from all eight patients with polycythemia vera who fulfilled these criteria consistently did not have a response to DNA damage by increasing NHE-1 levels, intracellular pH, or Bcl-x_d deamidation (Fig. 2A to 2C). In addition, both etoposide and irradiation produced significantly less apoptosis in polycythemia vera granulocytes than in normal granulocytes (Fig. 2D). In contrast to the granulocytes, T cells from the same patients showed no defect in DNA damage–induced Bcl-x_d deamidation, intracellular alkalinization, or apoptosis (Fig. 3 in the Supplementary Appendix).

As with CML cells, enforced alkalinization of polycythemia vera granulocytes overcame inhibition of the NHE-1–Bcl-x_d deamidation pathway and was accompanied by increased Bcl-x_d deamidation and apoptosis (Fig. 6 in the Supplementary Appendix). The Bcl-x_d deamidation pathway was also inhibited in granulocytes from two patients with idiopathic myelofibrosis with the JAK2 V617F mutation but not in two patients with this disease without the JAK2 mutation (Fig. 7 in the Supplementary Appendix).

To elucidate further the correlation between tyrosine kinase expression and inhibition of the NHE-1–Bcl-x_d pathway, we investigated eight cell lines representing different hematologic cancers associated with distinct molecular mechanisms (Table 1 and Fig. 8 in the Supplementary Appendix). The NHE-1–Bcl-x_d pathway was inhibited in K562 cells carrying BCR-ABL and derived from a patient with CML in blast crisis and also in human erythroleukemia (HEL) cells, which carry the JAK2 V617F mutation and were derived from a patient with acute myeloid leukemia. These data suggest that the pathway remains inhibited after leukemic transformation, which was confirmed using blasts from a patient with CML in blast crisis (data not shown). In contrast, the pathway was intact in four other cell lines that are not thought to express oncogenic tyrosine kinases (Table 1 and Fig. 8 in the Supplementary Appendix). The pathway was also intact in a T-lymphoma cell line (Karpas-299), which expresses the NPM-ALK tyrosine kinase fusion protein, and in a myeloma cell line (OPM-2), which overexpresses the fibroblast growth factor receptor 3 (FGFR3) tyrosine kinase. These results suggest that inhibition of the Bcl-x_d deamidation pathway is not a general feature of hematologic cancers and is mediated by a subgroup of tyrosine kinases or is dependent on a particular cellular context.

To address whether inhibition of the NHE-1–Bcl-x_d pathway is influenced by kinase strength, we performed a series of experiments using a Baf3–TpoR cell line transduced with BCR-ABL, JAK2 V617F, or NPM-ALK tyrosine kinases, giving rise to several cell populations with varying kinase expression levels (Fig. 9 in the Supplementary Appendix). Levels of BCR-ABL and JAK2 V617F expression correlated well with the degree of inhibition of the Bcl-x_d deamidation pathway, whereas NPM-ALK caused no inhibition even at its highest expression level.

Both CML and polycythemia vera are thought to arise from a transformed multipotent stem cell. BCR-ABL is expressed at high levels in stem and progenitor cells and induces expansion of the progenitor compartment during chronic-phase CML. We therefore assessed the status of the NHE-1–Bcl-x_d pathway in normal and CML progenitors that expressed the CD34 stem-cell antigen. In normal CD34+ cells, but not in those derived from patients with CML, etoposide treatment increased NHE-1 levels, Bcl-x_d deamidation,
intracellular alkalinization, and apoptosis (Fig. 3A to 3C). Furthermore, in normal CD34+ cells, apoptosis that was triggered by DNA damage was significantly inhibited by dimethylamiloride, a selective NHE-1 antiport inhibitor (Fig. 10 in the Supplementary Appendix). These data demonstrate that the Bcl-xL deamidation pathway operates in normal CD34+ cells and is inhibited in CD34+ cells from patients with CML.

We next addressed whether inhibition of the Bcl-xL deamidation pathway was dependent on aberrant kinase activity. Granulocytes from three patients with polycythemia vera were exposed to three different JAK2 inhibitors. All three inhibitors reversed the block of the pathway: Bcl-xL deamidation, intracellular pH, and apoptosis all increased in response to DNA damage (Fig. 3D, and Fig. 11 in the Supplementary Appendix).
PBMCs (>85% myeloid) that were obtained at the time of diagnosis from four patients with CML were also exposed to imatinib, a selective tyrosine kinase inhibitor. In contrast to untreated cells, imatinib-treated cells increased NHE-1 levels and Bcl-x₇ deamidation in response to DNA damage (Fig. 3E and 3F). These results demonstrate a causal link between tyrosine kinase activity and repression of the Bcl-x₇ deamidation pathway.

Imatinib and the JAK2 inhibitors inhibit the activity of several kinases in addition to BCR-ABL and JAK2, respectively, raising the possibility that inhibition of other kinases may contribute to the observed effects. We therefore studied a patient who had become resistant to imatinib as a consequence of an E255V mutation in the BCR-ABL kinase domain. Imatinib-treated PBMCs from this patient did not have increased NHE-1 levels in response to etoposide or Bcl-x₇ deamidation in response to either etoposide or irradiation (Fig. 4A and 4B). However, the effects of imatinib resistance could be bypassed by NHE-1 overexpression, which caused increased intracellular pH and apoptosis (Fig. 4C and 4D), or by enforced alcalinization, which caused increased Bcl-x₇ deamidation and apoptosis (Fig. 12 in the Supplementary Appendix). These data demonstrate that BCR-ABL kinase activity is essential for inhibition of the Bcl-x₇ deamidation pathway in CML cells.

DISCUSSION

Deamidation of internal asparagine or glutamine residues can have a profound influence on protein function and has been implicated in a wide range of biologic processes. Rates of asparagine deamidation were initially thought to be fixed and determined solely by the structural context of a given asparagine residue, but an active role in the regulation of biologic processes was suggested by the observations that DNA damage can trigger rapid deamidation of Bcl-x₇ and that Bcl-x₇ deamidation plays a central role in the apoptotic response of normal mouse thymocytes to DNA damage.

In our study, we found that the signaling pathway leading from DNA damage to Bcl-x₇ deamidation and consequent apoptosis is inhibited in two myeloproliferative disorders associated with different tyrosine kinases and activated by distinct mechanisms (Fig. 5). We demonstrated this defect in cells from all 20 patients bearing either BCR-ABL or the JAK2 V617F mutation, whereas no defect was observed in cells expressing other oncogenic tyrosine kinases, such as NPM-ALK. To suppress the apoptotic response to DNA damage, it is insufficient for BCR-ABL or mutant JAK2 merely to up-regulate or maintain Bcl-x₇ expres-
sion levels. In addition, both oncogenic tyrosine kinases must prevent deamidation of Bcl-xL to preserve its antiapoptotic function. These observations not only shed light on the accumulation of DNA damage that is characteristic of these cancers but also have potential therapeutic relevance.

CML and polycythemia vera are associated with an increased risk of leukemic transformation, which is thought to reflect the accrual of additional genetic lesions. However, it is not clear why stem cells from patients with chronic-phase CML and polycythemia vera are prone to accumulate DNA damage. Normal cells undergo many DNA strand breaks per genome per cell division, and adequate DNA repair mechanisms, combined with the removal of damaged cells by apoptosis, are therefore essential for homeostasis. Inhibition of the Bcl-xL deamidation pathway in chronic-phase CML and polycythemia vera

Figure 4. Effect of Imatinib Resistance on the NHE-1–Bcl-xL Pathway Induced by DNA Damage in CML Cells. In Panel A, imatinib does not reverse inhibition of DNA damage–induced NHE-1 up-regulation in imatinib-resistant CML cells. Purified peripheral-blood mononuclear cells (PBMCs) of 90% myeloid origin (as confirmed by fluorescence-activated cell sorting) from a patient who was resistant to imatinib and carried a BCR-ABL kinase domain E255V mutation were cultured in RPMI with 10% fetal-calf serum, with or without imatinib (1.5 μM). The samples were treated with etoposide (Etop) for 3, 6, or 9 hours, as shown, and then NHE-1 expression was assessed by immunoblotting. Relative quantification values (normalized for tubulin loading control) are shown. In Panel B, imatinib does not reverse inhibition of DNA damage–induced Bcl-xL deamidation in imatinib-resistant CML cells. PBMCs that were cultured with or without imatinib as described in Panel A were treated with etoposide or irradiation (IR). Cells were harvested and processed for immunoblotting of Bcl-xL or tubulin (loading control). The percentages of deamidated Bcl-xL were calculated as described in Figure 1A, and the values are shown. In Panel C, overexpression of NHE-1 causes Bcl-xL deamidation in imatinib-resistant CML cells. PBMCs from a patient with imatinib-resistant CML were either untreated or were transfected with empty vector or with pNHE-1–IRES–EGFP (NHE-1 vector) with the use of a Nucleofector kit (Amaxa Biosystems). GFP-positive cells were then sorted and subjected to immunoblotting for NHE-1 or Bcl-xL. Tubulin was reprobed as a loading control. Densitometric values that were normalized for protein loading are shown under the immunoblots. In Panel D, the overexpression of NHE-1 causes intracellular alkalinization and apoptosis in imatinib-resistant CML cells. Intracellular pH and sub-G1 percentages were measured as described in Figure 1B and 1C.
provides a mechanism for circumventing the apoptotic response and permitting accumulation of DNA damage within the malignant clone.

It has been reported that cells expressing oncogenic tyrosine kinases, including BCR-ABL, are resistant to DNA damage. Resistance to DNA-damaging agents depends on BCR-ABL catalytic activity. This finding, the combination of antileukemic chemotherapy with the tyrosine kinase inhibitor imatinib produces increased or synergistic apoptosis. Our results shed light on the molecular basis for the effectiveness of such combination therapies. Inhibition of BCR-ABL by imatinib is associated with increased levels of proapoptotic BH3-only proteins, such as Bim and Bad. The activity of these molecules is constrained by their binding to Bcl-xL. Optimal apoptosis in response to DNA damage requires that imatinib restore the normal Bcl-xL deamidation pathway, thus minimizing sequestration by Bcl-xL and maximizing apoptosis in response to DNA-damaging agents.

The use of tyrosine kinase inhibitors in CML faces two main challenges. Acquired resistance to imatinib therapy can result in relapse, often as a consequence of kinase-domain mutations in BCR-ABL. In addition, treatment of CML with tyrosine kinase inhibitors is usually associated with persistence of residual disease, which is thought to reflect quiescent BCR-ABL–positive stem cells that resist current tyrosine kinase inhibitors. It is therefore notable that an increase in the expression of NHE-1 by a factor of 2 to 3 was sufficient to increase Bcl-xL deamidation and triple the level of apoptosis in imatinib-resistant CML cells (Fig. 4D). Therefore, targeted stimulation of Bcl-xL deamidation provides a potential route for circumventing resistance to tyrosine kinase inhibitors and perhaps also for eradicating leukemic stem cells.

The NHE-1 antiport itself represents a potential therapeutic target. Small-molecule inhibitors already exist, although the development of agonists may be more challenging. The NHE-1 anti-
port can also be activated by phosphorylation, which suggests the possibility of other therapeutic approaches. The fact that modulation of the NHE-1–Bcl-xL signaling pathway can bypass resistance to apoptosis in patients with CML and polycythemia vera raises the possibility of new therapeutic approaches that could be of general relevance to any cancer in which Bcl-xL plays an important role in genotoxic resistance. Indeed, Bcl-xL expression in a wide range of cancers has a striking correlation with resistance to genotoxic compounds, which suggests that our findings are likely to have relevance well beyond the myeloproliferative disorders.

Supported by the Association for International Cancer Research, the Biotechnology and Biological Sciences Research Council, the U.K. Leukaemia Research Fund, the Wellcome Trust, the U.K. Medical Research Council, Cancer Research UK, the National Institute for Health Research Cambridge Biomedical Research Center, and the U.S. Leukemia and Lymphoma Society.

No potential conflict of interest relevant to this article was reported.

We thank Geoff Morgan and Mary Janes for their assistance with fluorescence-activated cell sorting and cell culture, respectively; Dr. Suzanne Turner for providing the NPM–ALK construct; the Addenbrooke’s Haematological Disorders Sample Bank for storage and provision of samples; and Drs. J. Lyons and M. Squires for providing JAK2 inhibitors.

REFERENCES

31. McGlynn P, Lloyd RG. Recombination

Supplementary Appendix

This appendix has been provided by the authors to give readers additional information about their work.

Supplementary data

Figure S1. FACS analysis of the cells purified from normal donors and CML patients.
(a) Granulocytes were purified from the peripheral blood of normal and CML patient donors. The similar cell surface marker phenotype of the normal and CML granulocytes was confirmed by staining with anti-CD2, CD3, CD19, conjugated to FITC; anti-CD13, conjugated to PE; and anti-CD14, conjugated to APC. The analysis was carried out on a FACScalibur.
(b) Peripheral blood mononuclear cells were isolated from CML patients and stained and analysed as in (a).

Figure S2. Expression levels of NHE-1 and extent of Bcl-xL deamidation in CML and PV patients.
(a) Western blots showing the NHE-1 expression level of representative CML patients and PV patients. Tubulin was reprobed as a loading control. NHE-1 relative intensities normalised for protein loading are shown below the immunoblot with untreated controls set at a value of 1 (*). Basal NHE-1 expression was comparable between normal donor, CML and PV cells.
(b) NHE-1 relative intensities (quantified from the western blots) of the normal donors, CML, and PV patients utilised in this study are shown as mean values with untreated controls set at a value of 1. Comparison of normal donors’ and CML or PV patients’ etoposide and irradiation treated sample values generates * p<0.001.
(c) Percentages of deamidated Bcl-xL measured in aliquots of the samples used in (b) are shown as mean values. Comparison of normal donors’ and CML or PV patients’ etoposide and irradiation treated Bcl-xL deamidation values generates * p<0.001.
There was no significant different in basal Bcl-xL deamidation values between donor, CML and PV patients’ values (p = >0.05).

Figure S3. DNA damage induces the Bcl-xL deamidation pathway in T lymphocytes from CML and PV patients.
(a) DNA damage induces intracellular alkalinisation in T lymphocytes from CML and PV patients. PBMC were purified from patients’ blood and stained with CD3-FITC,
before T cells were purified by flow cytometry. The cells were then processed as in Fig 1a. Intracellular pH was measured as in Fig 1b. The mean values ± S.D. from 7 PV and 3 CML patients are shown in the histogram. * p<0.001.

(b) DNA damage induces Bcl-xL deamidation in T lymphocytes from CML and PV patients. Cell aliquots as used for (a) were subjected to immunoblotting for Bcl-xL. A representative blot is shown with actin as a loading control.

(c) DNA damage induces apoptosis in T lymphocytes from CML and PV patients. Apoptosis was measured using aliquots of the same cells used in (a) by sub-G1 DNA staining using flow cytometry. The mean values ± S.D. from 7 PV and 3 CML patients are shown in the histogram. *p<0.001.

Figure S4. Enforced intracellular alkalinisation of CML cells causes Bcl-xL deamidation and apoptosis.

(a) Enforced intracellular alkalinisation of CML cells causes Bcl-xL deamidation. Purified granulocytes from CML patients were cultured in RPMI/10% Fetal Calf Serum with the extracellular pH (pHe) as shown, treated with irradiation or etoposide as in Fig1a, and analysed for Bcl-xL deamidation by immunoblotting. The deamidated species of Bcl-xL were quantified as in Fig1a.

(b) Enforced intracellular alkalinisation of CML cells causes apoptosis. Aliquots of the cells used for (a) were assessed for apoptosis. The histograms represent sub-G1 % mean values ± S.D. (n=10). The numbers above the histogram bars show the mean intracellular pH values. Statistical comparison of values between cells cultured in media with pHe 7.2 and pHe 8.0, and between cells cultured in media with pHe 7.2 and pHe 8.5, generated * p< 0.001; ** p<0.0001.

Figure S5. Analysis of mutations in JAK2 from polycythaemia vera patients.

(a) Representative granulocyte sequencing traces from a normal control and 3 PV patient used in Figure 2, showing the somatic G to T transversion (black arrow) that causes phenylalanine to be substituted for valine at position 617 of JAK2 (V617F). (b) Pyrosequencing results for the PV patients are shown in the table. The allele burden was at least 62% in all patients. Since the granulocytes will include both homozygous and heterozygous mutant cells, these results indicate that the vast majority of granulocytes are likely to contain at least one mutant allele.
Figure S6. Enforced intracellular alkalisation of polycythaemia vera cells causes Bcl-x_L deamidation and apoptosis.
(a) Enforced intracellular alkalisation of PV cells causes Bcl-x_L deamidation. Purified granulocytes from PV patients were cultured in RPMI/10% Fetal Calf Serum with the extracellular pH (pH_e) as shown, treated with irradiation or etoposide as in Fig1a, and analysed for Bcl-x_L deamidation by immunoblotting. The deamidated species of Bcl-x_L were quantified as in Fig1a.
(b) Enforced intracellular alkalisation of PV cells causes apoptosis. Apoptosis (sub-G1) was measured using aliquots of the same cells used in (a), analysed as in Fig 1c. The histograms represent sub-G1 % mean values ± S.D. (n=8). The numbers above the histogram bars show the mean intracellular pH values. Statistical comparison of values between cells cultured in media with pH_e 7.2 and pH_e 8.0, and between cells cultured with pH_e 7.2 and pH_e 8.5, generated * p<0.01; ** p<0.001.

Figure S7. Analysis of the Bcl-x_L deamidation pathway in IMF patients’ granulocytes.
(a) Granulocytes from 2 IMF patients without JAK2^{V617F} mutation and 2 IMF patients with the JAK2^{V617F} mutation were treated with etoposide and irradiation and analysed as in Fig 1a.
(b) Intracellular pH was measured using aliquots of the same cells used in (a).
(c) Apoptosis was measured using aliquots of the same cells used in (a) by sub-G1 DNA staining using flow cytometry.

Figure S8. Analysis of the Bcl-x_L deamidation pathway in cancer cell lines.
(a) Representative western blots showing Bcl-x_L deamidation in the 8 cell lines analysed. Cell lines were maintained in RPMI/10% Fetal Calf Serum. Cells were either treated with 50μM etoposide for 24h, or exposed to 5 Gy of irradiation and then cultured for 24h. Cells were lysed and subjected to immunoblotting for Bcl-x_L and tubulin (loading control). The deamidated Bcl-x_L values were calculated as in Fig 1a.
(b) Intracellular pH was measured in the same cell aliquots from (a) as for Fig. 1b.
(c) Apoptosis (sub-G1 percentages) was measured in the same cell aliquots from (a) as for Fig. 1c. The histograms in both (b) and (c) show the mean values ± S.D. from at least 3 separate measurements.

Figure S9. Kinase expression levels correlate with the degree of inhibition of DNA damage-induced Bcl-xL deamidation.

(a) Flow cytometric analysis of sub-populations of BaF3/TpoR cells transfected with different expression levels of Bcr-Abl. Retroviral vector MIG-BCR-ABL was transduced into BaF3/TpoR cells at a range of retroviral titers. The cells were then sorted using a FACSARia into four populations with different expression levels of GFP.

(b) The four populations of cells from (a) were processed for immunoblotting with a BCR-ABL antibody and the immunoblots reprobed for actin as loading control.

(c) The BCR-ABL expression level correlates with the degree of inhibition of DNA damage-induced Bcl-xL deamidation. The same cell aliquots as shown in (b) were treated with etoposide and irradiation as in Fig 1a, and processed for immunoblotting with Bcl-xL. One representative blot from 3 independent experiments is shown and the percentage of deamidation was quantified as in Fig 1a.

(d) The BCR-ABL expression level correlates with the degree of inhibition of DNA damage-induced intracellular alkalinisation. Intracellular pH was measured in the same cell aliquots as in (b). The mean values ± S.D. from 3 independent experiments are shown in the histogram.

(e) Jak2V617F and NPM-ALK were expressed in BaF3/TpoR cells by retroviral transduction. Three cell populations with different GFP levels (labelled as #1, #2 and #3) were sorted by flow cytometry from each kinase-transduced BaF3/TpoR cells.

(f) A comparison of different BRC-ABL, mutant Jak2 and NPM-ALK expression levels on the DNA damage-induced Bcl-xL deamidation pathway. Cells expressing Jak2V617F and NPM-ALK shown in (e) and cells expressing BCR-ABL shown in (a) and (b) were treated with etoposide for 24h, then processed for immunoblotting with Bcl-xL. A representative blot is shown with the percentage of deamidation below. Note that with increased kinase expression, Jak2V617F and BCR-ABL show increased inhibition of the pathway, whereas NPM-ALK shows no inhibition even at its highest expression level.
Figure S10. DNA damage-triggered apoptosis in normal CD34-positive cells is inhibited by DMA.
CD34-positive cells from three normal donors were treated with or without DMA (100 μM), and with or without etoposide (50 μM) for 24 h. Percentage of sub-G1 DNA was measured by FACS. Statistical evaluation of the difference between ‘etoposide alone’ and ‘etoposide+DMA’ generated p = <0.05.

Figure S11. JAK2 inhibitors (JAK inhibitor 1, TG101209 and AT9283) reverse the inhibition of the DNA damage-induced Bcl-x_L deamidation pathway in PV granulocytes.
(a) JAK2 inhibitors reverse the inhibition of DNA damage-induced intracellular alkalinisation in PV granulocytes. Intracellular pH was measured using aliquots of the same cells used in Fig 3f. The mean values ± S.D. from 3 PV patients are shown in the histogram. Statistical comparison of values in the presence or absence of JAK2 inhibitors revealed p = <0.01.
(b) JAK2 inhibitors reverse the inhibition of DNA damage-induced apoptosis in PV granulocytes. Apoptosis was measured using aliquots of the same cells used in Fig 3f by sub-G1 DNA staining using flow cytometry. The mean values ± S.D. from 3 PV patients are shown in the histogram. Statistical comparison of values in the presence or absence of JAK2 inhibitors revealed p = <0.01.

Figure S12. Enforced intracellular alkalinisation reverses the effects of imatinib-resistance in CML cells.
(a) Enforced intracellular alkalinisation of imatinib-resistant CML cells causes Bcl-x_L deamidation. PBMCs from an imatinib-resistant CML patient were cultured in RPMI/10% Fetal Calf Serum with the extracellular pH (pHe) as shown, treated with irradiation or etoposide as in Fig 1a, and analysed for Bcl-x_L deamidation by immunoblotting. The deamidated species of Bcl-x_L were quantified as in Fig. 1a.
(b) The intracellular pH and apoptosis (sub-G1 percentage) were measured in the same cell aliquots as in Fig 1 (b) and (c) respectively. The numbers above the histogram bars show the mean intracellular pH values.
Supplementary Figure S1

A

CD13

- CD2, 3, 19

CD14

- CD2, 3, 19

CD14

- CD13

Normal donor Granulocytes

CML Granulocytes

B

CML PBMC

CD13

- CD2, 3, 19

CD14

- CD2, 3, 19

CD14

- CD13
Supplementary Figure S2

A

<table>
<thead>
<tr>
<th></th>
<th>Wt #1</th>
<th>CML #1</th>
<th>CML #3</th>
<th>PV #1</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>0.9</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.0</td>
<td>1.0</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>1.1</td>
<td></td>
</tr>
</tbody>
</table>

NHE-1 relative intensity

Bcl-xL deamidated (%)

B

C

Etop

IR
Supplementary Figure S3

A

- Bar chart showing pH values for PV-T (n=7) and CML-T (n=3) cells.
- Conditions: ut, E, IR.
- Data points and error bars indicating statistical significance.

B

- Western blot analysis of Bcl-xL and actin expression.
- Conditions: CML-T, Etop, IR.
- Protein bands indicating deamidated levels.
- Deamidated (%% of total): 49%, 89%, 88%, 48%, 91%, 89%.

C

- Bar chart showing sub-G1 (%%) for PV-T (n=7) and CML-T (n=3) cells.
- Conditions: ut, E, IR.
- Data points and error bars indicating statistical significance.
Supplementary Figure S4

A

CML

<table>
<thead>
<tr>
<th>pH_0</th>
<th>Etop</th>
<th>IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8.0</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>8.5</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Bcl-x_L

tubulin

Deamidated (% of total)

39% 69% 83% 41% 73% 88% 40% 72% 90%

B

untreated

Etop

IR

**

sub-G1 (%)

pHe 7.2 pHe 8.0 pHe 8.5

7.12 7.16 7.14

7.47 7.53 7.51

7.62 7.63 7.64

* ** *
Supplementary Figure S5

A

Normal control

PV # 2

PV # 3

PV # 4

B

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Mutant allele burden</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>90%</td>
</tr>
<tr>
<td>#2</td>
<td>96%</td>
</tr>
<tr>
<td>#3</td>
<td>93%</td>
</tr>
<tr>
<td>#4</td>
<td>100%</td>
</tr>
<tr>
<td>#5</td>
<td>72%</td>
</tr>
<tr>
<td>#6</td>
<td>98%</td>
</tr>
<tr>
<td>#7</td>
<td>77%</td>
</tr>
<tr>
<td>#8</td>
<td>62%</td>
</tr>
</tbody>
</table>
Supplementary Figure S6

A

<table>
<thead>
<tr>
<th>pH_e</th>
<th>Etop</th>
<th>IR</th>
<th>Deamidated (% of total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2</td>
<td>-</td>
<td>-</td>
<td>42±6%</td>
</tr>
<tr>
<td>7.2</td>
<td>-</td>
<td>+</td>
<td>41±5%</td>
</tr>
<tr>
<td>7.2</td>
<td>+</td>
<td>-</td>
<td>43±4%</td>
</tr>
<tr>
<td>7.2</td>
<td>+</td>
<td>+</td>
<td>56±5%</td>
</tr>
<tr>
<td>8.0</td>
<td>-</td>
<td>-</td>
<td>57±4%</td>
</tr>
<tr>
<td>8.0</td>
<td>-</td>
<td>+</td>
<td>58±5%</td>
</tr>
<tr>
<td>8.0</td>
<td>+</td>
<td>-</td>
<td>73±5%</td>
</tr>
<tr>
<td>8.0</td>
<td>+</td>
<td>+</td>
<td>76±6%</td>
</tr>
<tr>
<td>8.0</td>
<td>-</td>
<td>-</td>
<td>75±6%</td>
</tr>
<tr>
<td>8.0</td>
<td>-</td>
<td>+</td>
<td>75±6%</td>
</tr>
<tr>
<td>8.5</td>
<td>-</td>
<td>-</td>
<td>76±6%</td>
</tr>
<tr>
<td>8.5</td>
<td>-</td>
<td>+</td>
<td>75±6%</td>
</tr>
<tr>
<td>8.5</td>
<td>+</td>
<td>-</td>
<td>73±5%</td>
</tr>
<tr>
<td>8.5</td>
<td>+</td>
<td>+</td>
<td>58±5%</td>
</tr>
<tr>
<td>8.5</td>
<td>-</td>
<td>-</td>
<td>57±4%</td>
</tr>
<tr>
<td>8.5</td>
<td>-</td>
<td>+</td>
<td>56±5%</td>
</tr>
<tr>
<td>8.5</td>
<td>+</td>
<td>-</td>
<td>43±4%</td>
</tr>
<tr>
<td>8.5</td>
<td>+</td>
<td>+</td>
<td>41±5%</td>
</tr>
<tr>
<td>8.5</td>
<td>-</td>
<td>-</td>
<td>42±6%</td>
</tr>
<tr>
<td>8.5</td>
<td>-</td>
<td>+</td>
<td>41±5%</td>
</tr>
</tbody>
</table>

PV

B

- Graph A shows a Western blot analysis with bands for Bcl-xL and tubulin.
- Graph B presents a bar chart with sub-G1 (% of total) for different conditions:
 - pH_e 7.2: Control (ut), Etop, and IR conditions.
 - pH_e 8.0: Control (ut), Etop, and IR conditions.
 - pH_e 8.5: Control (ut), Etop, and IR conditions.
- Statistical significance is indicated by: * (p < 0.05), ** (p < 0.01).
Supplementary Figure S7

A

<table>
<thead>
<tr>
<th>IMF: V617F(-)</th>
<th>IMF: V617F(+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etop</td>
<td>+</td>
</tr>
<tr>
<td>IR</td>
<td>-</td>
</tr>
</tbody>
</table>

Deamidated (% of total)

Bcl-xL

actin

53% 91% 93% 45% 73% 82% 47% 48% 45% 48% 51%

B

C

untreated

Etop

IR

pHi

V617F(-) #1 V617F(-) #2 V617F(+) #1 V617F(+) #2

sub-G1 (%)

V617F(-) #1 V617F(-) #2 V617F(+) #1 V617F(+) #2
Supplementary Figure S9

A

B

C

D

E

F

GFP

BCR-ABL

actin

actin

JAK2 V617F BCR-ABL NPM-ALK

Etop + + +

Deamida ted (% of total)

48%

89%

90%

83%

47%

84%

47%

49%

Deamidated (% of total)

48%

48%

50%

47%

69%

64%

47%

45%

88%

85%

49%

69%

64%

47%

48%

48%

48%

50%

48%

48%
Supplementary Table 1. Description of cell lines used for investigation of the Bcl-x_L deamidation pathway

<table>
<thead>
<tr>
<th>Cell lines</th>
<th>Hematological cancers</th>
<th>Chromosomal defects</th>
<th>Dysfunctional / deregulated gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>K562<sup>1</sup></td>
<td>Chronic Myeloid Leukaemia</td>
<td>t(9;22)(q34;q11)</td>
<td>BCR-ABL*</td>
</tr>
<tr>
<td>HEL<sup>2</sup></td>
<td>Polycythaemia Vera</td>
<td>JAK2 V617F homozygous</td>
<td>JAK2*</td>
</tr>
<tr>
<td>Daudi<sup>3</sup></td>
<td>Burkitt lymphoma/Burkitt cell leukemia</td>
<td>t(8;14)(q24;q32)</td>
<td>c-myc</td>
</tr>
<tr>
<td>DU528<sup>4</sup></td>
<td>Precursor T-cell acute lymphoblastic leukemia</td>
<td>t(1;14)(p34;q11)</td>
<td>TAL1</td>
</tr>
<tr>
<td>JVM2<sup>5</sup></td>
<td>Mantle-cell lymphoma</td>
<td>t(11;14)(q13;q32)</td>
<td>cyclinD1</td>
</tr>
<tr>
<td>Karpas299<sup>6</sup></td>
<td>Anaplastic large-cell lymphoma</td>
<td>t(2;5)(p23;q35)</td>
<td>NPM-ALK*</td>
</tr>
<tr>
<td>OPM2<sup>7</sup></td>
<td>Multiple myeloma</td>
<td>t(4;14)(p16;q32)</td>
<td>FGFR3*</td>
</tr>
<tr>
<td>DOHH2<sup>8</sup></td>
<td>Follicular lymphoma</td>
<td>t(14;18)(q32;q21)</td>
<td>BCL2</td>
</tr>
</tbody>
</table>

* signifies dysfunctional / deregulated gene is a tyrosine kinase