Anglia Ruskin Research Online (ARRO)
Browse
Roberts_2016_2.pdf (144.73 kB)

Effects of a Three-day Period of Intense, Intermittent Exercise on Oxidative Stress and Inflammation

Download (144.73 kB)
poster
posted on 2023-07-26, 14:01 authored by Camilla R. Holland, Michael G. Roberts, Justin D. Roberts
It is documented that strenuous and prolonged exercise induces oxidative stress and inflammation, with the associated muscle damage and fatigue compromising performance. Little is known about the oxidant effects of intense, intermittent exercise, as performed daily by elite athletes competing in team sports. PURPOSE: To assess the short-term effects of a 3-day period of intense, intermittent exercise on biomarkers of oxidative stress and inflammation in trained athletes. METHODS: Ten trained athletes (age: 32.11±1.91yrs; mass: 66.33±1.95kg; maximal oxygen uptake (VO2max): 51.44±1.59mL·kg·minˉ1) completed a high-intensity, intermittent exercise protocol (90-minute intermittent treadmill run, ~70% VO2max) on three consecutive days and were compared to a control group (N=10). Blood samples were collected immediately pre (T1) and post (T2) the 3-day exercise protocol, then 21h- (T3) and 42h-post-exercise (T4); and assayed for Total Antioxidant Status (TAS), Thiobarbituric Acid Reactive Substances (TBARS), Interleukins (IL-6, IL-8 and IL-10), C-Reactive Protein (C-RP) and Lactate Dehydrogenase (LDH). Data were corrected for plasma volume change; results presented as M±SE. RESULTS: No significant differences were observed between the exercise and control group at T1 (TAS: 1.20±0.14mmol.L-1 vs. 1.18±0.11mmol.L-1; LDH: 302.14±16.24U/L vs. 295.27±31.26U/L; TBARS: 6.21±1.09μM vs. 5.88±1.00μM; and IL-6: 0.67±0.70pg/ml vs. 1.12±0.28pg/ml). The 3-day exercise period caused a significant increase in LDH (413.24±35.27U/L, P = 0.029), IL-6 (2.54±0.35pg/ml, P = 0.037) and TBARS (7.00±0.61μM, P = 0.042) at T2, with the effects of TBARS remaining above baseline at T4 (6.43±0.79μM, P = 0.043). TAS increased post-exercise with a significant difference observed between groups at T2 (1.86±0.21mmol.L-1 vs. 1.20±0.13mmol.L-1, P = 0.006), T3 (1.86±0.28mmol.L-1 vs. 1.30±0.14mmol.L-1, P = 0.010) and T4 (1.71±0.22mmol.L-1 vs. 1.17±0.13mmol.L-1, P = 0.014). IL-8, IL-10, and C-RP did not differ between groups. CONCLUSIONS: A 3-day period of intense, intermittent exercise increased oxidative stress and upregulated antioxidants in trained athletes, confirming the current model that exercise-induced oxidants play an important role in intracellular signaling pathways of endogenous antioxidants.

History

Volume

48

Issue number

5S

Page range

394

Publication title

Medicine & Science in Sports & Exercise

ISSN

1530-0315

Publisher

American College of Sports Medicine

Conference proceeding

Medicine & Science in Sports & Exercise

Name of event

American College of Sports Medicine 63rd Annual Meeting

Location

Boston, MA

Event start date

2016-05-31

Event finish date

2016-06-03

File version

  • Published version

Language

  • eng

Legacy posted date

2016-12-16

Legacy creation date

2016-12-15

Legacy Faculty/School/Department

ARCHIVED Faculty of Science & Technology (until September 2018)

Usage metrics

    ARU Outputs

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC