Enhancing resilience in urban water systems for future cities

Mugume, Seith N. and Diao, Kegong and Astaraie-Imani, Maryam and Fu, Guangtao and Farmani, Raziyeh and Butler, David (2015) Enhancing resilience in urban water systems for future cities. Water Science & Technology: Water Supply, 15 (6). pp. 1343-1352. ISSN 1606-9749

[img] Text
Published Version
Restricted to Repository staff only
Available under the following license: Creative Commons Attribution Non-commercial No Derivatives.

Download (476kB)
Official URL: http://dx.doi.org/10.2166/ws.2015.098

Abstract

In future cities, urban water systems (UWSs) should be designed not only for safe provision of services but should also be resilient to emerging or unexpected threats that lead to catastrophic system failure impacts and consequences. Resilience can potentially be built into UWSs by implementing a range of strategies, for example by embedding redundancy and flexibility in system design, or by rehabilitation to increase their ability to maintain acceptable customer service levels during unexpected system failures. In this work, a new resilience analysis is carried out to investigate the performance of a water distribution system (WDS) and an urban drainage system (UDS) during pipe failure scenarios. Using simplified synthetic networks, the effect of implementing adaptation (resilient design) strategies on minimising the loss of system functionality and cost of UWSs is investigated. Study results for the WDS case study show that the design strategy in which flexibility is enhanced ensures that all customers are served during single pipe failure scenarios. The results of the UDS case study indicate that the design strategy incorporating upstream distributed storage tanks minimises flood volume and mean duration of nodal flooding by 50.1% and 46.7%, respectively, even when system functionality is significantly degraded. When costs associated with failure are considered, resilient design strategies could prove to be more cost-effective over the design life of UWSs.

Item Type: Journal Article
Keywords: flexibility, pipe failure, redundancy, resilience, urban water systems
Faculty: Faculty of Science & Technology
Depositing User: Dr Maryam Imani
Date Deposited: 19 Oct 2017 14:36
Last Modified: 19 Oct 2017 14:36
URI: http://arro.anglia.ac.uk/id/eprint/702363

Actions (login required)

Edit Item Edit Item